基于空间信息、通信和能量采集技术的c波段物理射频能量采集器

S. Kawasaki, S. Yoshida, T. Nakaoka, K. Nishikawa
{"title":"基于空间信息、通信和能量采集技术的c波段物理射频能量采集器","authors":"S. Kawasaki, S. Yoshida, T. Nakaoka, K. Nishikawa","doi":"10.1109/MWSYM.2018.8439367","DOIUrl":null,"url":null,"abstract":"In this paper, novel ICs made by different types of semi-conductors as the hybrid semiconductor integrated circuit, HySIC, are introduced. A C-band compact full Si rectifier and a HySIC RF rectifier operating at 5.8 GHz were described using 0.18μm Si CMOS process and chip-to-wafer bonding. From them, RF -DC conversion efficiencies were measured as about 25% and 10%, respectively. Further, a wide power-range HySIC RF energy harvester by combining the rectifiers implemented on the Si substrate was made and the fundamental data were successfully obtained","PeriodicalId":6675,"journal":{"name":"2018 IEEE/MTT-S International Microwave Symposium - IMS","volume":"12 1","pages":"1265-1268"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The C-Band HySIC RF Energy Harvester Based on the Space Information, Communication and Energy Harvesting Technology\",\"authors\":\"S. Kawasaki, S. Yoshida, T. Nakaoka, K. Nishikawa\",\"doi\":\"10.1109/MWSYM.2018.8439367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, novel ICs made by different types of semi-conductors as the hybrid semiconductor integrated circuit, HySIC, are introduced. A C-band compact full Si rectifier and a HySIC RF rectifier operating at 5.8 GHz were described using 0.18μm Si CMOS process and chip-to-wafer bonding. From them, RF -DC conversion efficiencies were measured as about 25% and 10%, respectively. Further, a wide power-range HySIC RF energy harvester by combining the rectifiers implemented on the Si substrate was made and the fundamental data were successfully obtained\",\"PeriodicalId\":6675,\"journal\":{\"name\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"volume\":\"12 1\",\"pages\":\"1265-1268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2018.8439367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/MTT-S International Microwave Symposium - IMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2018.8439367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了由不同类型的半导体制成的新型集成电路,如混合半导体集成电路(HySIC)。采用0.18μm Si CMOS工艺和芯片-晶圆键合技术,设计了工作频率为5.8 GHz的c波段紧凑型全硅整流器和HySIC射频整流器。由此,射频-直流转换效率分别约为25%和10%。此外,结合在硅衬底上实现的整流器,制作了宽功率范围的HySIC射频能量采集器,并成功获得了基本数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The C-Band HySIC RF Energy Harvester Based on the Space Information, Communication and Energy Harvesting Technology
In this paper, novel ICs made by different types of semi-conductors as the hybrid semiconductor integrated circuit, HySIC, are introduced. A C-band compact full Si rectifier and a HySIC RF rectifier operating at 5.8 GHz were described using 0.18μm Si CMOS process and chip-to-wafer bonding. From them, RF -DC conversion efficiencies were measured as about 25% and 10%, respectively. Further, a wide power-range HySIC RF energy harvester by combining the rectifiers implemented on the Si substrate was made and the fundamental data were successfully obtained
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信