低秩和角结构辅助毫米波MIMO信道估计与少位adc

Jiang Zhu, Zhennan Liu, Chunyi Song, Zhiwei Xu, C. Zhong
{"title":"低秩和角结构辅助毫米波MIMO信道估计与少位adc","authors":"Jiang Zhu, Zhennan Liu, Chunyi Song, Zhiwei Xu, C. Zhong","doi":"10.1109/SAM48682.2020.9104402","DOIUrl":null,"url":null,"abstract":"The problem of channel estimation for millimeter wave (mmWave) systems employing few-bit ADCs is studied. Since the mmWave channel is usually characterized by a geometric channel model, which is low rank and sparse in angular domains, utilizing the low-rank structure along with the sparsity improves the channel estimation performance. Specifically, this paper develops a two stage approach for mmWave channel estimation, namely, a low rank matrix recovery stage and a gridless angle recovery stage. At the first stage, because the low rank matrix undergoes a linear transform followed by a componentwise nonlinear transform, three modules named sparse Bayesian learning, linear minimum mean squared error (LMMSE) module, MMSE module are designed respectively for the signal recovery. At the second stage, utilizing the recovered low rank matrix along with the subspace, MUSIC is adopted to recover the angular information, which further improves the channel estimation performance. Numerical experiments are conducted to show the effectiveness of the proposed approach.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"70 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-rank and Angular Structures aided mmWave MIMO Channel Estimation with Few-bit ADCs\",\"authors\":\"Jiang Zhu, Zhennan Liu, Chunyi Song, Zhiwei Xu, C. Zhong\",\"doi\":\"10.1109/SAM48682.2020.9104402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of channel estimation for millimeter wave (mmWave) systems employing few-bit ADCs is studied. Since the mmWave channel is usually characterized by a geometric channel model, which is low rank and sparse in angular domains, utilizing the low-rank structure along with the sparsity improves the channel estimation performance. Specifically, this paper develops a two stage approach for mmWave channel estimation, namely, a low rank matrix recovery stage and a gridless angle recovery stage. At the first stage, because the low rank matrix undergoes a linear transform followed by a componentwise nonlinear transform, three modules named sparse Bayesian learning, linear minimum mean squared error (LMMSE) module, MMSE module are designed respectively for the signal recovery. At the second stage, utilizing the recovered low rank matrix along with the subspace, MUSIC is adopted to recover the angular information, which further improves the channel estimation performance. Numerical experiments are conducted to show the effectiveness of the proposed approach.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"70 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了采用少量adc的毫米波系统的信道估计问题。由于毫米波信道通常具有低秩和角域稀疏的几何信道模型,因此利用低秩结构和稀疏性可以提高信道估计性能。具体而言,本文开发了毫米波信道估计的两阶段方法,即低秩矩阵恢复阶段和无网格角度恢复阶段。在第一阶段,由于低秩矩阵先进行线性变换,再进行分量非线性变换,因此分别设计了稀疏贝叶斯学习、线性最小均方误差(LMMSE)模块、MMSE模块三个模块进行信号恢复。在第二阶段,利用恢复的低秩矩阵和子空间,采用MUSIC恢复角度信息,进一步提高信道估计性能。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-rank and Angular Structures aided mmWave MIMO Channel Estimation with Few-bit ADCs
The problem of channel estimation for millimeter wave (mmWave) systems employing few-bit ADCs is studied. Since the mmWave channel is usually characterized by a geometric channel model, which is low rank and sparse in angular domains, utilizing the low-rank structure along with the sparsity improves the channel estimation performance. Specifically, this paper develops a two stage approach for mmWave channel estimation, namely, a low rank matrix recovery stage and a gridless angle recovery stage. At the first stage, because the low rank matrix undergoes a linear transform followed by a componentwise nonlinear transform, three modules named sparse Bayesian learning, linear minimum mean squared error (LMMSE) module, MMSE module are designed respectively for the signal recovery. At the second stage, utilizing the recovered low rank matrix along with the subspace, MUSIC is adopted to recover the angular information, which further improves the channel estimation performance. Numerical experiments are conducted to show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信