三元环多项式的平坦性

Bin Zhang
{"title":"三元环多项式的平坦性","authors":"Bin Zhang","doi":"10.4171/rsmup/47","DOIUrl":null,"url":null,"abstract":"It is well known that all of the prime cyclotomic polynomials and binary cyclotomic polynomials are flat, and the flatness of ternary cyclotomic polynomials is much more complicated. Let p < q < r be odd primes such that zr ≡ ±1 (mod pq), where z is a positive integer. So far, the classification of flat ternary cyclotomic polynomials for 1 ≤ z ≤ 5 has been given. In this paper, for z = 6 and q ≡ ±1 (mod p), we give the necessary and sufficient conditions for ternary cyclotomic polynomials Φpqr(x) to be flat. Mathematics Subject Classification (2010). 11B83, 11C08, 11N56.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"463 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The flatness of ternary cyclotomic polynomials\",\"authors\":\"Bin Zhang\",\"doi\":\"10.4171/rsmup/47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that all of the prime cyclotomic polynomials and binary cyclotomic polynomials are flat, and the flatness of ternary cyclotomic polynomials is much more complicated. Let p < q < r be odd primes such that zr ≡ ±1 (mod pq), where z is a positive integer. So far, the classification of flat ternary cyclotomic polynomials for 1 ≤ z ≤ 5 has been given. In this paper, for z = 6 and q ≡ ±1 (mod p), we give the necessary and sufficient conditions for ternary cyclotomic polynomials Φpqr(x) to be flat. Mathematics Subject Classification (2010). 11B83, 11C08, 11N56.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"463 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

素数分环多项式和二元分环多项式都是平坦的,而三元分环多项式的平坦性要复杂得多。设p < q < r为奇素数,使得zr≡±1 (mod pq),其中z为正整数。目前为止,已经给出了1≤z≤5的平面三元环多项式的分类。对于z = 6且q≡±1 (mod p),给出了三元环多项式Φpqr(x)平坦的充分必要条件。数学学科分类(2010)。11b83, 11c08, 11n56。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The flatness of ternary cyclotomic polynomials
It is well known that all of the prime cyclotomic polynomials and binary cyclotomic polynomials are flat, and the flatness of ternary cyclotomic polynomials is much more complicated. Let p < q < r be odd primes such that zr ≡ ±1 (mod pq), where z is a positive integer. So far, the classification of flat ternary cyclotomic polynomials for 1 ≤ z ≤ 5 has been given. In this paper, for z = 6 and q ≡ ±1 (mod p), we give the necessary and sufficient conditions for ternary cyclotomic polynomials Φpqr(x) to be flat. Mathematics Subject Classification (2010). 11B83, 11C08, 11N56.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信