{"title":"流加密的安全性在谷歌的叮当库","authors":"V. Hoang, Yaobin Shen","doi":"10.1145/3372297.3417273","DOIUrl":null,"url":null,"abstract":"We analyze the multi-user security of the streaming encryption in Google's Tink library via an extended version of the framework of nonce-based online authenticated encryption of Hoang et al. (CRYPTO'15) to support random-access decryption. We show that Tink's design choice of using random nonces and a nonce-based key-derivation function indeed improves the concrete security bound. We then give two better alternatives that are more robust against randomness failure. In addition, we show how to efficiently instantiate the key-derivation function via AES, instead of relying on HMAC-SHA256 like the current design in Tink. To accomplish this we give a multi-user analysis of the XOR-of-permutation construction of Bellare, Krovetz, and Rogaway (EUROCRYPT'98).","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Security of Streaming Encryption in Google's Tink Library\",\"authors\":\"V. Hoang, Yaobin Shen\",\"doi\":\"10.1145/3372297.3417273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the multi-user security of the streaming encryption in Google's Tink library via an extended version of the framework of nonce-based online authenticated encryption of Hoang et al. (CRYPTO'15) to support random-access decryption. We show that Tink's design choice of using random nonces and a nonce-based key-derivation function indeed improves the concrete security bound. We then give two better alternatives that are more robust against randomness failure. In addition, we show how to efficiently instantiate the key-derivation function via AES, instead of relying on HMAC-SHA256 like the current design in Tink. To accomplish this we give a multi-user analysis of the XOR-of-permutation construction of Bellare, Krovetz, and Rogaway (EUROCRYPT'98).\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Security of Streaming Encryption in Google's Tink Library
We analyze the multi-user security of the streaming encryption in Google's Tink library via an extended version of the framework of nonce-based online authenticated encryption of Hoang et al. (CRYPTO'15) to support random-access decryption. We show that Tink's design choice of using random nonces and a nonce-based key-derivation function indeed improves the concrete security bound. We then give two better alternatives that are more robust against randomness failure. In addition, we show how to efficiently instantiate the key-derivation function via AES, instead of relying on HMAC-SHA256 like the current design in Tink. To accomplish this we give a multi-user analysis of the XOR-of-permutation construction of Bellare, Krovetz, and Rogaway (EUROCRYPT'98).