具有Kullback-Leibler控制成本的在线马尔可夫决策过程

Peng Guan, M. Raginsky, R. Willett
{"title":"具有Kullback-Leibler控制成本的在线马尔可夫决策过程","authors":"Peng Guan, M. Raginsky, R. Willett","doi":"10.1109/ACC.2012.6314926","DOIUrl":null,"url":null,"abstract":"We consider an online (real-time) control problem that involves an agent performing a discrete-time random walk over a finite state space. The agent's action at each time step is to specify the probability distribution for the next state given the current state. Following the set-up of Todorov (2007, 2009), the state-action cost at each time step is a sum of a nonnegative state cost and a control cost given by the Kullback-Leibler divergence between the agent's next-state distribution and that determined by some fixed passive dynamics. The online aspect of the problem is due to the fact that the state cost functions are generated by a dynamic environment, and the agent learns the current state cost only after having selected the corresponding action. We give an explicit construction of an efficient strategy that has small regret (i.e., the difference between the total state-action cost incurred causally and the smallest cost attainable using noncausal knowledge of the state costs) under mild regularity conditions on the passive dynamics. We demonstrate the performance of our proposed strategy on a simulated target tracking problem.","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Online Markov decision processes with Kullback-Leibler control cost\",\"authors\":\"Peng Guan, M. Raginsky, R. Willett\",\"doi\":\"10.1109/ACC.2012.6314926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an online (real-time) control problem that involves an agent performing a discrete-time random walk over a finite state space. The agent's action at each time step is to specify the probability distribution for the next state given the current state. Following the set-up of Todorov (2007, 2009), the state-action cost at each time step is a sum of a nonnegative state cost and a control cost given by the Kullback-Leibler divergence between the agent's next-state distribution and that determined by some fixed passive dynamics. The online aspect of the problem is due to the fact that the state cost functions are generated by a dynamic environment, and the agent learns the current state cost only after having selected the corresponding action. We give an explicit construction of an efficient strategy that has small regret (i.e., the difference between the total state-action cost incurred causally and the smallest cost attainable using noncausal knowledge of the state costs) under mild regularity conditions on the passive dynamics. We demonstrate the performance of our proposed strategy on a simulated target tracking problem.\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2012.6314926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2012.6314926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们考虑一个在线(实时)控制问题,该问题涉及一个代理在有限状态空间上执行离散时间随机行走。agent在每个时间步的动作是给定当前状态指定下一个状态的概率分布。根据Todorov(2007, 2009)的建立,每个时间步的状态-行动成本是由agent下一状态分布与某些固定被动动态决定的Kullback-Leibler散度给出的非负状态成本和控制成本之和。问题的在线方面是由于状态代价函数是由动态环境生成的,并且代理只有在选择了相应的动作之后才学习当前状态代价。在被动动力学的温和规则条件下,我们给出了一个具有小遗憾的有效策略的明确构造(即,在状态成本的非因果知识下产生的总状态-行动成本与可获得的最小成本之间的差异)。我们在一个模拟目标跟踪问题上验证了所提策略的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Markov decision processes with Kullback-Leibler control cost
We consider an online (real-time) control problem that involves an agent performing a discrete-time random walk over a finite state space. The agent's action at each time step is to specify the probability distribution for the next state given the current state. Following the set-up of Todorov (2007, 2009), the state-action cost at each time step is a sum of a nonnegative state cost and a control cost given by the Kullback-Leibler divergence between the agent's next-state distribution and that determined by some fixed passive dynamics. The online aspect of the problem is due to the fact that the state cost functions are generated by a dynamic environment, and the agent learns the current state cost only after having selected the corresponding action. We give an explicit construction of an efficient strategy that has small regret (i.e., the difference between the total state-action cost incurred causally and the smallest cost attainable using noncausal knowledge of the state costs) under mild regularity conditions on the passive dynamics. We demonstrate the performance of our proposed strategy on a simulated target tracking problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信