{"title":"基于鲸鱼优化算法的燃料电池热电联产可再生并网微网多目标最优经济调度","authors":"S. Prakash, N. Kumarappan","doi":"10.13052/dgaej2156-3306.3757","DOIUrl":null,"url":null,"abstract":"Micro-grids are practical solution for combining distributed energy resources and combined heat and power units in order to satisfy the system power and heat demands. Nowadays, in order to integrate both renewable and non-renewable energy resources like photovoltaic, wind turbine, combined heat and power systems and fuel-cell unit; micro-grid seems to be a good idea. The aim of this paper is to obtain optimal scheduling of proposed generating units and to reduce the total operational cost and net emission of the system through economic/environmental power dispatch, while considering the impact of grid tied and autonomous mode of operation and satisfying the operational constraints. In this paper, a novel whale optimization algorithm is employed to solve this multi-objective problem. The obtained optimal results through this proposed whale optimization algorithm represents the efficiency, feasibility and capability of handling non-linear optimization problems in an efficient way compared to other optimization techniques. The proposed system is studied in a 24-h time horizon. The results obtained from this proposed technique are compared with other techniques which are recently employed.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Objective Optimal Economic Dispatch of a Fuel Cell and Combined Heat and Power Based Renewable Integrated Grid Tied Micro-grid Using Whale Optimization Algorithm\",\"authors\":\"S. Prakash, N. Kumarappan\",\"doi\":\"10.13052/dgaej2156-3306.3757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-grids are practical solution for combining distributed energy resources and combined heat and power units in order to satisfy the system power and heat demands. Nowadays, in order to integrate both renewable and non-renewable energy resources like photovoltaic, wind turbine, combined heat and power systems and fuel-cell unit; micro-grid seems to be a good idea. The aim of this paper is to obtain optimal scheduling of proposed generating units and to reduce the total operational cost and net emission of the system through economic/environmental power dispatch, while considering the impact of grid tied and autonomous mode of operation and satisfying the operational constraints. In this paper, a novel whale optimization algorithm is employed to solve this multi-objective problem. The obtained optimal results through this proposed whale optimization algorithm represents the efficiency, feasibility and capability of handling non-linear optimization problems in an efficient way compared to other optimization techniques. The proposed system is studied in a 24-h time horizon. The results obtained from this proposed technique are compared with other techniques which are recently employed.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Objective Optimal Economic Dispatch of a Fuel Cell and Combined Heat and Power Based Renewable Integrated Grid Tied Micro-grid Using Whale Optimization Algorithm
Micro-grids are practical solution for combining distributed energy resources and combined heat and power units in order to satisfy the system power and heat demands. Nowadays, in order to integrate both renewable and non-renewable energy resources like photovoltaic, wind turbine, combined heat and power systems and fuel-cell unit; micro-grid seems to be a good idea. The aim of this paper is to obtain optimal scheduling of proposed generating units and to reduce the total operational cost and net emission of the system through economic/environmental power dispatch, while considering the impact of grid tied and autonomous mode of operation and satisfying the operational constraints. In this paper, a novel whale optimization algorithm is employed to solve this multi-objective problem. The obtained optimal results through this proposed whale optimization algorithm represents the efficiency, feasibility and capability of handling non-linear optimization problems in an efficient way compared to other optimization techniques. The proposed system is studied in a 24-h time horizon. The results obtained from this proposed technique are compared with other techniques which are recently employed.