图的ρ容量

Sihuang Hu, O. Shayevitz
{"title":"图的ρ容量","authors":"Sihuang Hu, O. Shayevitz","doi":"10.1109/ISIT.2016.7541770","DOIUrl":null,"url":null,"abstract":"Motivated by the problem of zero-error broadcasting, we introduce a new notion of graph capacity, termed ρ-capacity, that generalizes the Shannon capacity of a graph. We derive upper and lower bounds on the ρ-capacity of arbitrary graphs, and provide a tighter upper bound for regular graphs. The ρ-capacity is employed to characterize the zero-error capacity region of the degraded broadcast channel.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The ρ-capacity of a graph\",\"authors\":\"Sihuang Hu, O. Shayevitz\",\"doi\":\"10.1109/ISIT.2016.7541770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the problem of zero-error broadcasting, we introduce a new notion of graph capacity, termed ρ-capacity, that generalizes the Shannon capacity of a graph. We derive upper and lower bounds on the ρ-capacity of arbitrary graphs, and provide a tighter upper bound for regular graphs. The ρ-capacity is employed to characterize the zero-error capacity region of the degraded broadcast channel.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在零错误广播问题的启发下,我们引入了一个新的图容量概念,称为ρ-容量,它推广了图的香农容量。我们给出了任意图的ρ容量的上界和下界,并给出了正则图的一个更紧的上界。采用ρ-capacity来表征退化广播信道的零误差容量区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ρ-capacity of a graph
Motivated by the problem of zero-error broadcasting, we introduce a new notion of graph capacity, termed ρ-capacity, that generalizes the Shannon capacity of a graph. We derive upper and lower bounds on the ρ-capacity of arbitrary graphs, and provide a tighter upper bound for regular graphs. The ρ-capacity is employed to characterize the zero-error capacity region of the degraded broadcast channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信