{"title":"图的ρ容量","authors":"Sihuang Hu, O. Shayevitz","doi":"10.1109/ISIT.2016.7541770","DOIUrl":null,"url":null,"abstract":"Motivated by the problem of zero-error broadcasting, we introduce a new notion of graph capacity, termed ρ-capacity, that generalizes the Shannon capacity of a graph. We derive upper and lower bounds on the ρ-capacity of arbitrary graphs, and provide a tighter upper bound for regular graphs. The ρ-capacity is employed to characterize the zero-error capacity region of the degraded broadcast channel.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The ρ-capacity of a graph\",\"authors\":\"Sihuang Hu, O. Shayevitz\",\"doi\":\"10.1109/ISIT.2016.7541770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the problem of zero-error broadcasting, we introduce a new notion of graph capacity, termed ρ-capacity, that generalizes the Shannon capacity of a graph. We derive upper and lower bounds on the ρ-capacity of arbitrary graphs, and provide a tighter upper bound for regular graphs. The ρ-capacity is employed to characterize the zero-error capacity region of the degraded broadcast channel.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motivated by the problem of zero-error broadcasting, we introduce a new notion of graph capacity, termed ρ-capacity, that generalizes the Shannon capacity of a graph. We derive upper and lower bounds on the ρ-capacity of arbitrary graphs, and provide a tighter upper bound for regular graphs. The ρ-capacity is employed to characterize the zero-error capacity region of the degraded broadcast channel.