具有温度依赖粘度的多孔介质中流体稳态MHD对流的Dufour和soret效应:同伦分析方法

A.J. Omowaye, A.I. Fagbade, A.O. Ajayi
{"title":"具有温度依赖粘度的多孔介质中流体稳态MHD对流的Dufour和soret效应:同伦分析方法","authors":"A.J. Omowaye,&nbsp;A.I. Fagbade,&nbsp;A.O. Ajayi","doi":"10.1016/j.jnnms.2015.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an analytical method of solution to steady two-dimensional hydromagnetic flow of a viscous incompressible, electrically conducting fluid past a semi-infinite moving permeable plate embedded in a porous medium. It is assumed that the fluid properties are constant except for the fluid viscosity which vary as an inverse linear function of temperature. The boundary layer equations are transformed in to a coupled ordinary differential equations with the help of similarity transformations. The resulting coupled ordinary differential equations were solved using the Homotopy Analysis Method (HAM). The combined effects of Dufour and Soret was investigated and presented graphically with controlling pertinent physical parameters.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"34 3","pages":"Pages 343-360"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.08.001","citationCount":"27","resultStr":"{\"title\":\"Dufour and soret effects on steady MHD convective flow of a fluid in a porous medium with temperature dependent viscosity: Homotopy analysis approach\",\"authors\":\"A.J. Omowaye,&nbsp;A.I. Fagbade,&nbsp;A.O. Ajayi\",\"doi\":\"10.1016/j.jnnms.2015.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an analytical method of solution to steady two-dimensional hydromagnetic flow of a viscous incompressible, electrically conducting fluid past a semi-infinite moving permeable plate embedded in a porous medium. It is assumed that the fluid properties are constant except for the fluid viscosity which vary as an inverse linear function of temperature. The boundary layer equations are transformed in to a coupled ordinary differential equations with the help of similarity transformations. The resulting coupled ordinary differential equations were solved using the Homotopy Analysis Method (HAM). The combined effects of Dufour and Soret was investigated and presented graphically with controlling pertinent physical parameters.</p></div>\",\"PeriodicalId\":17275,\"journal\":{\"name\":\"Journal of the Nigerian Mathematical Society\",\"volume\":\"34 3\",\"pages\":\"Pages 343-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.08.001\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0189896515000499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896515000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提出了粘性不可压缩导电流体通过嵌入在多孔介质中的半无限移动渗透板的二维稳定磁流的解析解方法。假定流体的性质是恒定的,除了流体粘度随温度成反线性函数变化。利用相似变换将边界层方程转化为耦合的常微分方程。用同伦分析方法求解得到的耦合常微分方程。在控制相关物理参数的情况下,研究了Dufour和Soret的联合效应,并以图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dufour and soret effects on steady MHD convective flow of a fluid in a porous medium with temperature dependent viscosity: Homotopy analysis approach

This paper presents an analytical method of solution to steady two-dimensional hydromagnetic flow of a viscous incompressible, electrically conducting fluid past a semi-infinite moving permeable plate embedded in a porous medium. It is assumed that the fluid properties are constant except for the fluid viscosity which vary as an inverse linear function of temperature. The boundary layer equations are transformed in to a coupled ordinary differential equations with the help of similarity transformations. The resulting coupled ordinary differential equations were solved using the Homotopy Analysis Method (HAM). The combined effects of Dufour and Soret was investigated and presented graphically with controlling pertinent physical parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信