{"title":"封闭二项式边理想","authors":"I. Peeva","doi":"10.1515/crelle-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract We prove a conjecture by Ene, Herzog, and Hibi (2011) that the Betti numbers of the binomial edge ideal J G {J_{G}} of a closed graph G coincide with the Betti numbers of its lex initial ideal M G {M_{G}} . We describe the Betti numbers of the ideal M G {M_{G}} .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed binomial edge ideals\",\"authors\":\"I. Peeva\",\"doi\":\"10.1515/crelle-2023-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove a conjecture by Ene, Herzog, and Hibi (2011) that the Betti numbers of the binomial edge ideal J G {J_{G}} of a closed graph G coincide with the Betti numbers of its lex initial ideal M G {M_{G}} . We describe the Betti numbers of the ideal M G {M_{G}} .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0048\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要证明了Ene、Herzog和Hibi(2011)关于闭图G的二项式边理想J G {J_{G}}的Betti数与其lex初始理想M G {M_{G}}的Betti数重合的猜想。我们描述了理想M G {M_{G}}的贝蒂数。
Abstract We prove a conjecture by Ene, Herzog, and Hibi (2011) that the Betti numbers of the binomial edge ideal J G {J_{G}} of a closed graph G coincide with the Betti numbers of its lex initial ideal M G {M_{G}} . We describe the Betti numbers of the ideal M G {M_{G}} .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.