经典点粒子连续系统平衡态相关指数衰减的l2 +ε -估计

G. Shchepanyuk
{"title":"经典点粒子连续系统平衡态相关指数衰减的l2 +ε -估计","authors":"G. Shchepanyuk","doi":"10.13189/UJPA.2015.030103","DOIUrl":null,"url":null,"abstract":"We present and prove L 2+e -estimates on exponential decay of correlations in equilibrium states of classical continuous systems of point particles interacting via an exponentially decaying pair potential of interaction, where e is arbitrary small and positive real number. The obtained estimates exhibit not only the explicit dependence on the distance between the areas of the equilibrium classical systems between which the correlations are estimated but also on the volume of these areas, which can be used in the future for the investigation of the corresponding non-equilibrium and dynamic systems.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"43 1","pages":"17-23"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L 2+ε -Esimates on Exponential Decay of Correlations in Equilibrium States of Classical Continuous Systems of Point Particles\",\"authors\":\"G. Shchepanyuk\",\"doi\":\"10.13189/UJPA.2015.030103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and prove L 2+e -estimates on exponential decay of correlations in equilibrium states of classical continuous systems of point particles interacting via an exponentially decaying pair potential of interaction, where e is arbitrary small and positive real number. The obtained estimates exhibit not only the explicit dependence on the distance between the areas of the equilibrium classical systems between which the correlations are estimated but also on the volume of these areas, which can be used in the future for the investigation of the corresponding non-equilibrium and dynamic systems.\",\"PeriodicalId\":23443,\"journal\":{\"name\":\"Universal Journal of Physics and Application\",\"volume\":\"43 1\",\"pages\":\"17-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Physics and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJPA.2015.030103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJPA.2015.030103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过相互作用的指数衰减对势,给出并证明了经典点粒子连续系统平衡态相关指数衰减的l2 +e估计,其中e是任意小的正实数。所得到的估计不仅明确地依赖于平衡经典系统区域之间的距离,而且还依赖于这些区域的体积,这可以在未来用于研究相应的非平衡和动态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L 2+ε -Esimates on Exponential Decay of Correlations in Equilibrium States of Classical Continuous Systems of Point Particles
We present and prove L 2+e -estimates on exponential decay of correlations in equilibrium states of classical continuous systems of point particles interacting via an exponentially decaying pair potential of interaction, where e is arbitrary small and positive real number. The obtained estimates exhibit not only the explicit dependence on the distance between the areas of the equilibrium classical systems between which the correlations are estimated but also on the volume of these areas, which can be used in the future for the investigation of the corresponding non-equilibrium and dynamic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信