基于随机投影的快速无参数密度聚类

Johannes Schneider, M. Vlachos
{"title":"基于随机投影的快速无参数密度聚类","authors":"Johannes Schneider, M. Vlachos","doi":"10.1145/2505515.2505590","DOIUrl":null,"url":null,"abstract":"Clustering offers significant insights in data analysis. Density based algorithms have emerged as flexible and efficient techniques, able to discover high-quality and potentially irregularly shaped- clusters. We present two fast density-based clustering algorithms based on random projections. Both algorithms demonstrate one to two orders of magnitude speedup compared to equivalent state-of-art density based techniques, even for modest-size datasets. We give a comprehensive analysis of both our algorithms and show runtime of O(dNlog2 N), for a d-dimensional dataset. Our first algorithm can be viewed as a fast variant of the OPTICS density-based algorithm, but using a softer definition of density combined with sampling. The second algorithm is parameter-less, and identifies areas separating clusters.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Fast parameterless density-based clustering via random projections\",\"authors\":\"Johannes Schneider, M. Vlachos\",\"doi\":\"10.1145/2505515.2505590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering offers significant insights in data analysis. Density based algorithms have emerged as flexible and efficient techniques, able to discover high-quality and potentially irregularly shaped- clusters. We present two fast density-based clustering algorithms based on random projections. Both algorithms demonstrate one to two orders of magnitude speedup compared to equivalent state-of-art density based techniques, even for modest-size datasets. We give a comprehensive analysis of both our algorithms and show runtime of O(dNlog2 N), for a d-dimensional dataset. Our first algorithm can be viewed as a fast variant of the OPTICS density-based algorithm, but using a softer definition of density combined with sampling. The second algorithm is parameter-less, and identifies areas separating clusters.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

聚类为数据分析提供了重要的见解。基于密度的算法已经成为一种灵活而高效的技术,能够发现高质量和潜在不规则形状的集群。提出了两种基于随机投影的快速密度聚类算法。与同等的基于密度的技术相比,这两种算法都显示出一到两个数量级的加速,即使对于中等规模的数据集也是如此。我们对我们的算法进行了全面的分析,并显示了d维数据集的运行时间为O(dnlog2n)。我们的第一个算法可以看作是OPTICS基于密度的算法的快速变体,但是使用了更柔和的密度定义和采样相结合。第二种算法是无参数的,它识别分离聚类的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast parameterless density-based clustering via random projections
Clustering offers significant insights in data analysis. Density based algorithms have emerged as flexible and efficient techniques, able to discover high-quality and potentially irregularly shaped- clusters. We present two fast density-based clustering algorithms based on random projections. Both algorithms demonstrate one to two orders of magnitude speedup compared to equivalent state-of-art density based techniques, even for modest-size datasets. We give a comprehensive analysis of both our algorithms and show runtime of O(dNlog2 N), for a d-dimensional dataset. Our first algorithm can be viewed as a fast variant of the OPTICS density-based algorithm, but using a softer definition of density combined with sampling. The second algorithm is parameter-less, and identifies areas separating clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信