膜反应器中直接非氧化甲烷转化

Q1 Materials Science
Su Cheun Oh, Mann Sakbodin, Dongxia Liu
{"title":"膜反应器中直接非氧化甲烷转化","authors":"Su Cheun Oh, Mann Sakbodin, Dongxia Liu","doi":"10.1039/9781788016971-00127","DOIUrl":null,"url":null,"abstract":"Methane is an abundant fossil resource and the main constituent of natural gas and oil-associated gases. Innovation in methane conversion chemistry and technology is essential to provide value-added chemicals and fuels, which could be an alternative to petroleum. Direct non-oxidative methane conversion (DNMC) has been studied to produce C2 (e.g., acetylene, ethylene, ethane) and aromatics (e.g., benzene and naphthalene), when combined are referred to as C2+ hydrocarbons. However, thermodynamic constraint in DNMC leads to low methane conversion, low C2+ yield, and rapid catalyst deactivation by coke. Membrane reactors comprised of active DNMC catalysts and hydrogen-permeable membranes have the potential to alleviate the thermodynamic barriers and increase methane conversion. This chapter summarizes the past research and ongoing development on DNMC reaction in membrane reactors. The catalysts, membrane materials, reactor configurations and performance for DNMC in membrane reactors are discussed. The challenges, strategies to mitigate reactor deterioration during DNMC, as well as future research and development directions to advance this technology for one-step conversion of methane to C2+ hydrocarbon fuels and chemicals are presented.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Direct non-oxidative methane conversion in membrane reactor\",\"authors\":\"Su Cheun Oh, Mann Sakbodin, Dongxia Liu\",\"doi\":\"10.1039/9781788016971-00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methane is an abundant fossil resource and the main constituent of natural gas and oil-associated gases. Innovation in methane conversion chemistry and technology is essential to provide value-added chemicals and fuels, which could be an alternative to petroleum. Direct non-oxidative methane conversion (DNMC) has been studied to produce C2 (e.g., acetylene, ethylene, ethane) and aromatics (e.g., benzene and naphthalene), when combined are referred to as C2+ hydrocarbons. However, thermodynamic constraint in DNMC leads to low methane conversion, low C2+ yield, and rapid catalyst deactivation by coke. Membrane reactors comprised of active DNMC catalysts and hydrogen-permeable membranes have the potential to alleviate the thermodynamic barriers and increase methane conversion. This chapter summarizes the past research and ongoing development on DNMC reaction in membrane reactors. The catalysts, membrane materials, reactor configurations and performance for DNMC in membrane reactors are discussed. The challenges, strategies to mitigate reactor deterioration during DNMC, as well as future research and development directions to advance this technology for one-step conversion of methane to C2+ hydrocarbon fuels and chemicals are presented.\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016971-00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016971-00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

摘要

甲烷是一种丰富的化石资源,是天然气和石油伴生气的主要成分。甲烷转化化学和技术的创新对于提供可替代石油的增值化学品和燃料至关重要。直接非氧化甲烷转化(DNMC)已被研究用于生产C2(如乙炔、乙烯、乙烷)和芳烃(如苯和萘),当结合时称为C2+碳氢化合物。然而,DNMC的热力学约束导致甲烷转化率低、C2+产率低、催化剂被焦炭失活快。由活性DNMC催化剂和透氢膜组成的膜反应器具有缓解热力学障碍和提高甲烷转化率的潜力。本章总结了膜反应器中DNMC反应的研究现状和发展趋势。讨论了膜反应器中DNMC的催化剂、膜材料、反应器结构和性能。提出了DNMC过程中面临的挑战、缓解反应器恶化的策略,以及推进该技术一步转化为C2+碳氢燃料和化学品的未来研究和发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct non-oxidative methane conversion in membrane reactor
Methane is an abundant fossil resource and the main constituent of natural gas and oil-associated gases. Innovation in methane conversion chemistry and technology is essential to provide value-added chemicals and fuels, which could be an alternative to petroleum. Direct non-oxidative methane conversion (DNMC) has been studied to produce C2 (e.g., acetylene, ethylene, ethane) and aromatics (e.g., benzene and naphthalene), when combined are referred to as C2+ hydrocarbons. However, thermodynamic constraint in DNMC leads to low methane conversion, low C2+ yield, and rapid catalyst deactivation by coke. Membrane reactors comprised of active DNMC catalysts and hydrogen-permeable membranes have the potential to alleviate the thermodynamic barriers and increase methane conversion. This chapter summarizes the past research and ongoing development on DNMC reaction in membrane reactors. The catalysts, membrane materials, reactor configurations and performance for DNMC in membrane reactors are discussed. The challenges, strategies to mitigate reactor deterioration during DNMC, as well as future research and development directions to advance this technology for one-step conversion of methane to C2+ hydrocarbon fuels and chemicals are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信