{"title":"关于三元丢番图方程x2−y2m = zn的注释","authors":"A. Bérczes, M. Le, I. Pink, G. Soydan","doi":"10.2478/auom-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract Let ℕ be the set of all positive integers. In this paper, using some known results on various types of Diophantine equations, we solve a couple of special cases of the ternary equation x2 − y2m = zn, x, y, z, m, n ∈ ℕ, gcd(x, y) = 1, m ≥ 2, n ≥ 3.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"28 1","pages":"93 - 105"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the ternary Diophantine equation x2 − y2m = zn\",\"authors\":\"A. Bérczes, M. Le, I. Pink, G. Soydan\",\"doi\":\"10.2478/auom-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let ℕ be the set of all positive integers. In this paper, using some known results on various types of Diophantine equations, we solve a couple of special cases of the ternary equation x2 − y2m = zn, x, y, z, m, n ∈ ℕ, gcd(x, y) = 1, m ≥ 2, n ≥ 3.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"28 1\",\"pages\":\"93 - 105\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设n为所有正整数的集合。本文利用一些已知的关于各种丢芬图方程的结果,解决了一类三元方程x2−y2m = zn, x, y, z, m, n∈_1,gcd(x, y) = 1, m≥2,n≥3的几个特殊情况。
A note on the ternary Diophantine equation x2 − y2m = zn
Abstract Let ℕ be the set of all positive integers. In this paper, using some known results on various types of Diophantine equations, we solve a couple of special cases of the ternary equation x2 − y2m = zn, x, y, z, m, n ∈ ℕ, gcd(x, y) = 1, m ≥ 2, n ≥ 3.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.