Syauqina Akmar Mohd-Shafri, T. Tiang, Choo Jun Tan, D. Ishak, M. S. Ahmad
{"title":"基于子域模型预测电动汽车SMPMSM电磁性能回归建模的遗传算法优化","authors":"Syauqina Akmar Mohd-Shafri, T. Tiang, Choo Jun Tan, D. Ishak, M. S. Ahmad","doi":"10.3390/engproc2021012073","DOIUrl":null,"url":null,"abstract":"This paper investigates a nonlinear modeling optimization of 12s/8p surface-mounted permanent magnet synchronous machines (SMPMSM) with a radial magnetization pattern. The modeling is based on subdomain model (SDM) computation, where the analytical models are developed to predict the electromagnetic (EM) performances, such as, average EM torque and EM torque ripple in PM machines. A genetic algorithm is applied to the proposed model in order to search for the optimal solutions. The objective function of the optimizations is obtaining a higher average EM torque and achieving the minimum EM torque ripple. The data, viz, and the average EM torque and its ripples predicted by SDM are employed in regression analysis in order to find the model of best fit. After that, the most suitable fit of the computing equation is selected. The preliminary and optimal designs of 12s/8p PM motors are also compared in terms of parameters and motor performance. As a result, the regression model and GA framework has reduced the use of magnet materials and the EM torque ripple of the SMPMSM, making it ideal for use in an electric car. Lastly, the proposed model can determine the appropriate configuration design parameters for SMPMSM in order to achieve the best motor performance.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GA Optimization for Regression Modeling of Electromagnetic Performances Predicted by a Subdomain Model for SMPMSM in an Electric Vehicle\",\"authors\":\"Syauqina Akmar Mohd-Shafri, T. Tiang, Choo Jun Tan, D. Ishak, M. S. Ahmad\",\"doi\":\"10.3390/engproc2021012073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a nonlinear modeling optimization of 12s/8p surface-mounted permanent magnet synchronous machines (SMPMSM) with a radial magnetization pattern. The modeling is based on subdomain model (SDM) computation, where the analytical models are developed to predict the electromagnetic (EM) performances, such as, average EM torque and EM torque ripple in PM machines. A genetic algorithm is applied to the proposed model in order to search for the optimal solutions. The objective function of the optimizations is obtaining a higher average EM torque and achieving the minimum EM torque ripple. The data, viz, and the average EM torque and its ripples predicted by SDM are employed in regression analysis in order to find the model of best fit. After that, the most suitable fit of the computing equation is selected. The preliminary and optimal designs of 12s/8p PM motors are also compared in terms of parameters and motor performance. As a result, the regression model and GA framework has reduced the use of magnet materials and the EM torque ripple of the SMPMSM, making it ideal for use in an electric car. Lastly, the proposed model can determine the appropriate configuration design parameters for SMPMSM in order to achieve the best motor performance.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2021012073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GA Optimization for Regression Modeling of Electromagnetic Performances Predicted by a Subdomain Model for SMPMSM in an Electric Vehicle
This paper investigates a nonlinear modeling optimization of 12s/8p surface-mounted permanent magnet synchronous machines (SMPMSM) with a radial magnetization pattern. The modeling is based on subdomain model (SDM) computation, where the analytical models are developed to predict the electromagnetic (EM) performances, such as, average EM torque and EM torque ripple in PM machines. A genetic algorithm is applied to the proposed model in order to search for the optimal solutions. The objective function of the optimizations is obtaining a higher average EM torque and achieving the minimum EM torque ripple. The data, viz, and the average EM torque and its ripples predicted by SDM are employed in regression analysis in order to find the model of best fit. After that, the most suitable fit of the computing equation is selected. The preliminary and optimal designs of 12s/8p PM motors are also compared in terms of parameters and motor performance. As a result, the regression model and GA framework has reduced the use of magnet materials and the EM torque ripple of the SMPMSM, making it ideal for use in an electric car. Lastly, the proposed model can determine the appropriate configuration design parameters for SMPMSM in order to achieve the best motor performance.