{"title":"从一般的加工时间、启动成本和损失的销售成本分析库存制造队列","authors":"Sinem Özkan, Önder Bulut","doi":"10.11121/ijocta.2022.1034","DOIUrl":null,"url":null,"abstract":"We consider a make-to-stock environment with a single production unit that corresponds to a single machine or a line. Production and hence inventory are controlled by the two-critical-number policy. Production times are independent and identically distributed general random variables and demands are generated according to a stationary Poisson process. We model this production-inventory system as an M/G/1 make-to-stock queue. The main contribution of the study is to extend the control of make-to-stock literature by considering general production times, lost sales and fixed production costs at the same time. We characterize the long-run behaviour of the system and also propose a simple but very effective approximation to calculate the control parameters of the two-critical-number policy. An extensive numerical study exhibits the effects of the production time distribution and the system parameters on the policy control levels and average system cost.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"64 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of make-to-stock queues with general processing times and start-up and lost sales costs\",\"authors\":\"Sinem Özkan, Önder Bulut\",\"doi\":\"10.11121/ijocta.2022.1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a make-to-stock environment with a single production unit that corresponds to a single machine or a line. Production and hence inventory are controlled by the two-critical-number policy. Production times are independent and identically distributed general random variables and demands are generated according to a stationary Poisson process. We model this production-inventory system as an M/G/1 make-to-stock queue. The main contribution of the study is to extend the control of make-to-stock literature by considering general production times, lost sales and fixed production costs at the same time. We characterize the long-run behaviour of the system and also propose a simple but very effective approximation to calculate the control parameters of the two-critical-number policy. An extensive numerical study exhibits the effects of the production time distribution and the system parameters on the policy control levels and average system cost.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2022.1034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2022.1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of make-to-stock queues with general processing times and start-up and lost sales costs
We consider a make-to-stock environment with a single production unit that corresponds to a single machine or a line. Production and hence inventory are controlled by the two-critical-number policy. Production times are independent and identically distributed general random variables and demands are generated according to a stationary Poisson process. We model this production-inventory system as an M/G/1 make-to-stock queue. The main contribution of the study is to extend the control of make-to-stock literature by considering general production times, lost sales and fixed production costs at the same time. We characterize the long-run behaviour of the system and also propose a simple but very effective approximation to calculate the control parameters of the two-critical-number policy. An extensive numerical study exhibits the effects of the production time distribution and the system parameters on the policy control levels and average system cost.