{"title":"关于色多项式和黄金比例","authors":"W.T. Tutte","doi":"10.1016/S0021-9800(70)80067-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>M</em> be a triangulation of the 2-sphere, with <em>k</em> vertices. Let <em>P</em>(<em>M, n</em>) be its chromatic polynomial with respect to vertex-colorings. Then<span><span><span><math><mrow><mo>|</mo><mi>P</mi><mo>(</mo><mi>M</mi><mo>,</mo><mn>1</mn><mo>+</mo><mi>τ</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><msup><mi>τ</mi><mrow><mn>5</mn><mo>−</mo><mi>k</mi></mrow></msup></mrow></math></span></span></span>where <em>τ</em> is the “golden ratio” <span><math><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>5</mn></msqrt><mo>)</mo><mo>/</mo><mn>2</mn></mrow></math></span></p><p>This result is offered as a theoretical explanation of the empirical observation that <em>P</em>(<em>M, n</em>) tends to have a zero near <em>n</em>=1+<em>τ</em> (see [1]).</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 3","pages":"Pages 289-296"},"PeriodicalIF":0.0000,"publicationDate":"1970-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80067-9","citationCount":"78","resultStr":"{\"title\":\"On chromatic polynomials and the golden ratio\",\"authors\":\"W.T. Tutte\",\"doi\":\"10.1016/S0021-9800(70)80067-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>M</em> be a triangulation of the 2-sphere, with <em>k</em> vertices. Let <em>P</em>(<em>M, n</em>) be its chromatic polynomial with respect to vertex-colorings. Then<span><span><span><math><mrow><mo>|</mo><mi>P</mi><mo>(</mo><mi>M</mi><mo>,</mo><mn>1</mn><mo>+</mo><mi>τ</mi><mo>)</mo><mo>|</mo><mo>⩽</mo><msup><mi>τ</mi><mrow><mn>5</mn><mo>−</mo><mi>k</mi></mrow></msup></mrow></math></span></span></span>where <em>τ</em> is the “golden ratio” <span><math><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>5</mn></msqrt><mo>)</mo><mo>/</mo><mn>2</mn></mrow></math></span></p><p>This result is offered as a theoretical explanation of the empirical observation that <em>P</em>(<em>M, n</em>) tends to have a zero near <em>n</em>=1+<em>τ</em> (see [1]).</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 3\",\"pages\":\"Pages 289-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80067-9\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let M be a triangulation of the 2-sphere, with k vertices. Let P(M, n) be its chromatic polynomial with respect to vertex-colorings. Thenwhere τ is the “golden ratio”
This result is offered as a theoretical explanation of the empirical observation that P(M, n) tends to have a zero near n=1+τ (see [1]).