Efori Bu’ulolo, Bister Purba
{"title":"Algoritma Clustering Untuk Membentuk Cluster Zona Penyebaran Covid-19","authors":"Efori Bu’ulolo, Bister Purba","doi":"10.31849/DIGITALZONE.V12I1.6572","DOIUrl":null,"url":null,"abstract":"Covid-19 yaitu suatu penyakit yang menyerang sistem pernapasan manusia dan dapat menular dengan mudah. Sumatera Utara salah satu daerah yang dilanda pandemi Covid-19. Melalui Gugus Tugas Percepatan dan Penanganan Covid-19 provinsi Sumatera Utara telah melakukan berbagai upaya untuk pencegahan penyebaran Covid-19 seperti belajar dan ibadah dirumah, himbauan pakai masker dan lain sebagainya. Untuk mempermudah  identifikasi penyebaran Covid-19 Tim Gugus membagi zona penyebaran Covid-19 berdasarkan jumlah kasus positif. pembagian zona dengan menggunakan satu variabel yaitu positif menyebabkan penanganan Covid-19 tidak maksimal karena hanya terkonsentrasi pada zona dengan kasus positif yang terbanyak sedangkan potensi penyebaran bukan hanya dari kasus positif. Oleh karene itu, dibutuhkan teknik yang lain dapat mengelompokkan / cluster zona penyebaran Covid-19. Salah satu teknik yang sesuai untuk pengelompokkan / cluster yaitu algoritma clustering K-Medoids. Hasil dari implementasi algoritma Algoritma K-Medoids yaitu cluster zona penyebaran Covid-19 di Sumatera Utara dibagi dalam 3(tiga) Cluster yaitu cluster 1, cluster 2 dan cluster 3. Cluster 1 identik dengan zona merah, Cluster 2 identik dengan zona kuning dan cluster 3 identik dengan zona hijau. \nAbstract \nCovid-19 is a disease that attacks the human respiratory system and can be transmitted easily. North Sumatra is one of the areas hit by the Covid-19 pandemic. Through the Task Force for the Acceleration and Handling of Covid-19, the province of North Sumatra has made various efforts to prevent the spread of Covid-19, such as studying and worship at home, appealing to wear masks and so on. To make it easier to identify the spread of Covid-19, the Cluster Team divides the Covid-19 spread zones based on the number of positive cases. zoning by using one variable, namely positive, causes the handling of Covid-19 to be not optimal because it is only concentrated in the zone with the most positive cases, while the potential for spread is not only from positive cases. Therefore, another technique is needed to group / cluster the Covid-19 spread zones. One technique that is suitable for grouping / clustering is the K-Medoids clustering algorithm. The results of the implementation of the K-Medoids Algorithm algorithm, namely the Covid-19 spread zone cluster in North Sumatra is divided into 3 (three) clusters, namely cluster 1, cluster 2 and cluster 3. Cluster 1 is identical to the red zone, Cluster 2 is identical to the yellow zone and cluster 3 is identical to the green zone","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31849/DIGITALZONE.V12I1.6572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Covid-19是一种攻击人类呼吸系统的疾病,很容易传染。北苏门答腊是受科维-19大流行影响的地区之一。通过北苏门答腊北部Covid-19省的加速和处理工作组,一直在努力防止Covid-19的传播,如在家学习和崇拜、戴口罩等。为了更容易识别Covid-19的部署,工作组根据阳性病例数量划分了Covid-19的分散区域。区域划分使用一个变量为正,导致Covid-19处理程序不是最大的,因为它只集中在积极案例最多的区域,而潜在的传播潜力不仅仅来自积极案例。因此,需要另一种技术来划分Covid-19的分散区域。集群的一个合适技术是K-Medoids算法。北苏门答腊的Covid-19分散区K-Medoids算法的实现将其分为3个(3)集群即集群1、集群2和集群3。集群1与红色区域相同,集群2与黄色区域相同,集群3与绿色区域相同。Abstract Covid-19是一种疾病,可以很容易地传递给人类呼吸器系统。北苏门答腊岛是由Covid-19 pandemic拍摄的地区之一。在促进和处理Covid-19的特别任务中,北苏门答腊省采取了多种不同的努力来预防covid为了使它更容易识别Covid-19的传播,集群团队分解了Covid-19的传播区域。使用一种变化,namely阳性,导致处理Covid-19不是最佳的,因为它只集中在最积极的cases的区域,而潜在的传播只来自于积极的cases。在此之前,另一项技术需要将Covid-19扩散成扇区。一种技术,可以收集/凝集就是K-Medoids的签名算法。北苏门答腊K-Medoids算法的回收,namely的Covid-19星团被压缩成3(3)集群,namely集群1、集群2和集群3。集群1与红色区域相同,集群2与黄色区域相同,集群3与绿色区域相同
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algoritma Clustering Untuk Membentuk Cluster Zona Penyebaran Covid-19
Covid-19 yaitu suatu penyakit yang menyerang sistem pernapasan manusia dan dapat menular dengan mudah. Sumatera Utara salah satu daerah yang dilanda pandemi Covid-19. Melalui Gugus Tugas Percepatan dan Penanganan Covid-19 provinsi Sumatera Utara telah melakukan berbagai upaya untuk pencegahan penyebaran Covid-19 seperti belajar dan ibadah dirumah, himbauan pakai masker dan lain sebagainya. Untuk mempermudah  identifikasi penyebaran Covid-19 Tim Gugus membagi zona penyebaran Covid-19 berdasarkan jumlah kasus positif. pembagian zona dengan menggunakan satu variabel yaitu positif menyebabkan penanganan Covid-19 tidak maksimal karena hanya terkonsentrasi pada zona dengan kasus positif yang terbanyak sedangkan potensi penyebaran bukan hanya dari kasus positif. Oleh karene itu, dibutuhkan teknik yang lain dapat mengelompokkan / cluster zona penyebaran Covid-19. Salah satu teknik yang sesuai untuk pengelompokkan / cluster yaitu algoritma clustering K-Medoids. Hasil dari implementasi algoritma Algoritma K-Medoids yaitu cluster zona penyebaran Covid-19 di Sumatera Utara dibagi dalam 3(tiga) Cluster yaitu cluster 1, cluster 2 dan cluster 3. Cluster 1 identik dengan zona merah, Cluster 2 identik dengan zona kuning dan cluster 3 identik dengan zona hijau. Abstract Covid-19 is a disease that attacks the human respiratory system and can be transmitted easily. North Sumatra is one of the areas hit by the Covid-19 pandemic. Through the Task Force for the Acceleration and Handling of Covid-19, the province of North Sumatra has made various efforts to prevent the spread of Covid-19, such as studying and worship at home, appealing to wear masks and so on. To make it easier to identify the spread of Covid-19, the Cluster Team divides the Covid-19 spread zones based on the number of positive cases. zoning by using one variable, namely positive, causes the handling of Covid-19 to be not optimal because it is only concentrated in the zone with the most positive cases, while the potential for spread is not only from positive cases. Therefore, another technique is needed to group / cluster the Covid-19 spread zones. One technique that is suitable for grouping / clustering is the K-Medoids clustering algorithm. The results of the implementation of the K-Medoids Algorithm algorithm, namely the Covid-19 spread zone cluster in North Sumatra is divided into 3 (three) clusters, namely cluster 1, cluster 2 and cluster 3. Cluster 1 is identical to the red zone, Cluster 2 is identical to the yellow zone and cluster 3 is identical to the green zone
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信