《拉姆齐理论导论:快速函数、无穷和元数学》,作者:Matthew Katz和Jan Reimann

W. Gasarch
{"title":"《拉姆齐理论导论:快速函数、无穷和元数学》,作者:Matthew Katz和Jan Reimann","authors":"W. Gasarch","doi":"10.1145/3351452.3351456","DOIUrl":null,"url":null,"abstract":"This is a very important theorem since it shows that Peano Arithmetic cannot do everything in Number Theory. However, the statement S is not natural. Paris and Harrington came up with a natural statement in Ramsey Theory that is not provable in Peano Arithmetic. I have always wanted a clean self-contained treatment of the Paris-Harrington result and why it is not provable in Peano Arithmetic. Is this book that treatment? Yes!","PeriodicalId":22106,"journal":{"name":"SIGACT News","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of An Introduction to Ramsey Theory: Fast Functions, Infinity, and Metamathematics by Matthew Katz and Jan Reimann\",\"authors\":\"W. Gasarch\",\"doi\":\"10.1145/3351452.3351456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a very important theorem since it shows that Peano Arithmetic cannot do everything in Number Theory. However, the statement S is not natural. Paris and Harrington came up with a natural statement in Ramsey Theory that is not provable in Peano Arithmetic. I have always wanted a clean self-contained treatment of the Paris-Harrington result and why it is not provable in Peano Arithmetic. Is this book that treatment? Yes!\",\"PeriodicalId\":22106,\"journal\":{\"name\":\"SIGACT News\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGACT News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351452.3351456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGACT News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351452.3351456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是一个非常重要的定理,因为它表明皮亚诺算术不能做数论中的所有事情。然而,表述S是不自然的。帕里斯和哈林顿在拉姆齐理论中提出了一个在皮亚诺算术中无法证明的自然命题。我一直希望对Paris-Harrington结果有一个完整的解释,以及为什么它不能在皮亚诺算法中被证明。这本书是那种治疗方法吗?是的!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of An Introduction to Ramsey Theory: Fast Functions, Infinity, and Metamathematics by Matthew Katz and Jan Reimann
This is a very important theorem since it shows that Peano Arithmetic cannot do everything in Number Theory. However, the statement S is not natural. Paris and Harrington came up with a natural statement in Ramsey Theory that is not provable in Peano Arithmetic. I have always wanted a clean self-contained treatment of the Paris-Harrington result and why it is not provable in Peano Arithmetic. Is this book that treatment? Yes!
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信