求解油井中的两相流

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Victoria Pereira, A. Fowler
{"title":"求解油井中的两相流","authors":"Victoria Pereira, A. Fowler","doi":"10.1080/03091929.2019.1682568","DOIUrl":null,"url":null,"abstract":"ABSTRACT Oil wells contain two-phase liquid and gas mixtures driven upwards due to a pressure gradient. In this paper, we study a two-fluid model for vertical upwelling flow and explicitly account for the exsolution of the dissolved gas as the pressure decreases along the well. We find that the application of Henry's law for the dissolved gas concentration predicts a rapid transition to a foam, which runs counter to intuition. In order to study ways in which this rapid transition could be avoided, we examine rate limiting non-equilibrium dynamics by incorporating nucleation and bubble growth dynamics in the two-phase model.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"52 1","pages":"283 - 305"},"PeriodicalIF":1.1000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exsolving two-phase flow in oil wells\",\"authors\":\"Victoria Pereira, A. Fowler\",\"doi\":\"10.1080/03091929.2019.1682568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Oil wells contain two-phase liquid and gas mixtures driven upwards due to a pressure gradient. In this paper, we study a two-fluid model for vertical upwelling flow and explicitly account for the exsolution of the dissolved gas as the pressure decreases along the well. We find that the application of Henry's law for the dissolved gas concentration predicts a rapid transition to a foam, which runs counter to intuition. In order to study ways in which this rapid transition could be avoided, we examine rate limiting non-equilibrium dynamics by incorporating nucleation and bubble growth dynamics in the two-phase model.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"52 1\",\"pages\":\"283 - 305\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2019.1682568\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2019.1682568","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

油井中含有两相的液体和气体混合物,由于压力梯度而向上驱动。在本文中,我们研究了垂直上升流的双流体模型,并明确地解释了当压力沿井减小时溶解气体的溶解。我们发现溶解气体浓度的亨利定律预示着泡沫的快速转变,这与直觉相反。为了研究可以避免这种快速转变的方法,我们通过在两相模型中结合成核和气泡生长动力学来检查速率限制非平衡动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exsolving two-phase flow in oil wells
ABSTRACT Oil wells contain two-phase liquid and gas mixtures driven upwards due to a pressure gradient. In this paper, we study a two-fluid model for vertical upwelling flow and explicitly account for the exsolution of the dissolved gas as the pressure decreases along the well. We find that the application of Henry's law for the dissolved gas concentration predicts a rapid transition to a foam, which runs counter to intuition. In order to study ways in which this rapid transition could be avoided, we examine rate limiting non-equilibrium dynamics by incorporating nucleation and bubble growth dynamics in the two-phase model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信