{"title":"Cesàro非绝对型序列空间的若干矩阵变换","authors":"M. Şengönül, F. Başar","doi":"10.5036/MJIU.31.13","DOIUrl":null,"url":null,"abstract":"The present paper is concerned with the neccessary and sufficient conditions in order for a matrix A=(ank) to belong to the classes (l∞:Xp), (bs:Xp) and (bυ:Xp) respectively, where 1≤p≤∞. Furthermore, we prove that A∈(bs:μ) if and olny if B∈(l∞:μ) and use this to characterise the class (bs:Xp); where A and B are dual matrices and μ is any given sequence space.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"17 1","pages":"13-20"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Some Matrix Transformations Into the Cesàro Sequence Spaces of Non-absolute Type\",\"authors\":\"M. Şengönül, F. Başar\",\"doi\":\"10.5036/MJIU.31.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is concerned with the neccessary and sufficient conditions in order for a matrix A=(ank) to belong to the classes (l∞:Xp), (bs:Xp) and (bυ:Xp) respectively, where 1≤p≤∞. Furthermore, we prove that A∈(bs:μ) if and olny if B∈(l∞:μ) and use this to characterise the class (bs:Xp); where A and B are dual matrices and μ is any given sequence space.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"17 1\",\"pages\":\"13-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.31.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.31.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some Matrix Transformations Into the Cesàro Sequence Spaces of Non-absolute Type
The present paper is concerned with the neccessary and sufficient conditions in order for a matrix A=(ank) to belong to the classes (l∞:Xp), (bs:Xp) and (bυ:Xp) respectively, where 1≤p≤∞. Furthermore, we prove that A∈(bs:μ) if and olny if B∈(l∞:μ) and use this to characterise the class (bs:Xp); where A and B are dual matrices and μ is any given sequence space.