完成具有两行和三列填充的部分拉丁方格

IF 0.4 Q4 MATHEMATICS, APPLIED
C. J. Casselgren, Herman Goransson
{"title":"完成具有两行和三列填充的部分拉丁方格","authors":"C. J. Casselgren, Herman Goransson","doi":"10.4310/joc.2023.v14.n1.a6","DOIUrl":null,"url":null,"abstract":"Consider a partial Latin square $P$ where the first two rows and first three columns are completely filled, and every other cell of $P$ is empty. It has been conjectured that all such partial Latin squares of order at least $8$ are completable. Based on a technique by Kuhl and McGinn we describe a framework for completing partial Latin squares in this class. Moreover, we use our method for proving that all partial Latin squares from this family, where the intersection of the nonempty rows and columns form a Latin rectangle with three distinct symbols, is completable.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Completing partial Latin squares with two filled rows and three filled columns\",\"authors\":\"C. J. Casselgren, Herman Goransson\",\"doi\":\"10.4310/joc.2023.v14.n1.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a partial Latin square $P$ where the first two rows and first three columns are completely filled, and every other cell of $P$ is empty. It has been conjectured that all such partial Latin squares of order at least $8$ are completable. Based on a technique by Kuhl and McGinn we describe a framework for completing partial Latin squares in this class. Moreover, we use our method for proving that all partial Latin squares from this family, where the intersection of the nonempty rows and columns form a Latin rectangle with three distinct symbols, is completable.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2023.v14.n1.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n1.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个局部拉丁方格$P$,其中前两行和前三列完全填充,而$P$的其他单元格为空。据推测,所有这些阶数至少为$8$的部分拉丁平方都是可完备的。基于Kuhl和McGinn的技术,我们描述了一个完成部分拉丁平方的框架。此外,我们用我们的方法证明了所有来自这个族的部分拉丁正方形,其中非空行和列的交集形成一个具有三个不同符号的拉丁矩形,是可完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completing partial Latin squares with two filled rows and three filled columns
Consider a partial Latin square $P$ where the first two rows and first three columns are completely filled, and every other cell of $P$ is empty. It has been conjectured that all such partial Latin squares of order at least $8$ are completable. Based on a technique by Kuhl and McGinn we describe a framework for completing partial Latin squares in this class. Moreover, we use our method for proving that all partial Latin squares from this family, where the intersection of the nonempty rows and columns form a Latin rectangle with three distinct symbols, is completable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信