金针藤水提物制备纳米绿色fe3o4粉体及表征

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
A. Jalal, Nabil A. Fakhre
{"title":"金针藤水提物制备纳米绿色fe3o4粉体及表征","authors":"A. Jalal, Nabil A. Fakhre","doi":"10.14500/aro.10843","DOIUrl":null,"url":null,"abstract":"In this work, the magnetite nanoparticles (Fe3O4-NPs) synthesized using a simple, fast, and environmentally acceptable green approach. Gundelia Tournefortii Extract, an aqueous plant extract, was used for the first time in green synthesis to prepare nanoparticles as reducing, capping, and stabilizing agents. Such biomolecules as flavonoids, alkaloids, and antioxidants are found in the aqueous leaf extract, and their presence has been determined to have an important role in the synthesis of Fe3O4-NPs. The techniques used in this analysis include Fourier Transform Infrared, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, X-ray Diffraction, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The Vibrating Sample Magnetometer demonstrated that the samples were superparamagnetic, with a magnetization value of 48.6 emu/g. The prepared nanoparticle was applied to  remove Chrystal Violet (CV), Malachite Green(MG), and Safranin (S) dyes from prepared aqueous solutions with the adsorption capacity of 13.9, 15.6, and 14.4 mg/g respectively.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation and Characterization of Green Fe3 O4 Nanoparticle Using the Aqueous Plant Extract of Gundelia tournefortii L.\",\"authors\":\"A. Jalal, Nabil A. Fakhre\",\"doi\":\"10.14500/aro.10843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the magnetite nanoparticles (Fe3O4-NPs) synthesized using a simple, fast, and environmentally acceptable green approach. Gundelia Tournefortii Extract, an aqueous plant extract, was used for the first time in green synthesis to prepare nanoparticles as reducing, capping, and stabilizing agents. Such biomolecules as flavonoids, alkaloids, and antioxidants are found in the aqueous leaf extract, and their presence has been determined to have an important role in the synthesis of Fe3O4-NPs. The techniques used in this analysis include Fourier Transform Infrared, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, X-ray Diffraction, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The Vibrating Sample Magnetometer demonstrated that the samples were superparamagnetic, with a magnetization value of 48.6 emu/g. The prepared nanoparticle was applied to  remove Chrystal Violet (CV), Malachite Green(MG), and Safranin (S) dyes from prepared aqueous solutions with the adsorption capacity of 13.9, 15.6, and 14.4 mg/g respectively.\",\"PeriodicalId\":8398,\"journal\":{\"name\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14500/aro.10843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.10843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文采用一种简单、快速、环保的绿色方法合成了磁铁矿纳米颗粒(Fe3O4-NPs)。本文首次在绿色合成中采用植物水提物Gundelia Tournefortii提取物制备纳米颗粒作为还原剂、封盖剂和稳定剂。在水叶提取物中发现了黄酮类、生物碱和抗氧化剂等生物分子,它们的存在已被确定在Fe3O4-NPs的合成中起重要作用。该分析中使用的技术包括傅里叶变换红外、扫描电子显微镜、能量色散x射线光谱学、x射线衍射、透射电子显微镜和振动样品磁力计。振动样品磁强计表明,样品具有超顺磁性,磁化值为48.6 emu/g。制备的纳米颗粒对制备的水溶液中结晶紫(CV)、孔雀石绿(MG)和红花红(S)染料的吸附量分别为13.9、15.6和14.4 MG /g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Characterization of Green Fe3 O4 Nanoparticle Using the Aqueous Plant Extract of Gundelia tournefortii L.
In this work, the magnetite nanoparticles (Fe3O4-NPs) synthesized using a simple, fast, and environmentally acceptable green approach. Gundelia Tournefortii Extract, an aqueous plant extract, was used for the first time in green synthesis to prepare nanoparticles as reducing, capping, and stabilizing agents. Such biomolecules as flavonoids, alkaloids, and antioxidants are found in the aqueous leaf extract, and their presence has been determined to have an important role in the synthesis of Fe3O4-NPs. The techniques used in this analysis include Fourier Transform Infrared, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, X-ray Diffraction, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The Vibrating Sample Magnetometer demonstrated that the samples were superparamagnetic, with a magnetization value of 48.6 emu/g. The prepared nanoparticle was applied to  remove Chrystal Violet (CV), Malachite Green(MG), and Safranin (S) dyes from prepared aqueous solutions with the adsorption capacity of 13.9, 15.6, and 14.4 mg/g respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信