基于新型近距离雷达传感器的低功耗嵌入式手势识别

M. Eggimann, Jonas Erb, Philipp Mayer, M. Magno, L. Benini
{"title":"基于新型近距离雷达传感器的低功耗嵌入式手势识别","authors":"M. Eggimann, Jonas Erb, Philipp Mayer, M. Magno, L. Benini","doi":"10.1109/SENSORS43011.2019.8956617","DOIUrl":null,"url":null,"abstract":"This work proposes a low-power high-accuracy embedded hand-gesture recognition using low power short-range radar sensors. The hardware and software match the requirements for battery-operated wearable devices. A 2D Convolutional Neural Network (CNN) using range frequency Doppler features is combined with a Temporal Convolutional Neural Network (TCN) for time sequence prediction. The final algorithm has a model size of only 45723 parameters, yielding a memory footprint of only 91kB. Two datasets containing 11 challenging hand gestures performed by 26 different people have been recorded containing a total of 20210 gesture instances. On the 11 hands, gestures and an accuracy of 87% (26 users) and 92% (single user) have been achieved. Furthermore, the prediction algorithm has been implemented in the GAP8 Parallel Ultra-Low-Power processor by GreenWaves Technologies, showing that live-prediction is feasible with only 21mW of power consumption for the full gesture prediction neural network.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Low Power Embedded Gesture Recognition Using Novel Short-Range Radar Sensors\",\"authors\":\"M. Eggimann, Jonas Erb, Philipp Mayer, M. Magno, L. Benini\",\"doi\":\"10.1109/SENSORS43011.2019.8956617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a low-power high-accuracy embedded hand-gesture recognition using low power short-range radar sensors. The hardware and software match the requirements for battery-operated wearable devices. A 2D Convolutional Neural Network (CNN) using range frequency Doppler features is combined with a Temporal Convolutional Neural Network (TCN) for time sequence prediction. The final algorithm has a model size of only 45723 parameters, yielding a memory footprint of only 91kB. Two datasets containing 11 challenging hand gestures performed by 26 different people have been recorded containing a total of 20210 gesture instances. On the 11 hands, gestures and an accuracy of 87% (26 users) and 92% (single user) have been achieved. Furthermore, the prediction algorithm has been implemented in the GAP8 Parallel Ultra-Low-Power processor by GreenWaves Technologies, showing that live-prediction is feasible with only 21mW of power consumption for the full gesture prediction neural network.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"27 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于低功耗近程雷达传感器的低功耗高精度嵌入式手势识别方法。硬件和软件符合电池供电的可穿戴设备的要求。将二维卷积神经网络(CNN)与时域卷积神经网络(TCN)相结合进行时间序列预测。最终算法的模型大小只有45723个参数,产生的内存占用只有91kB。两个数据集包含26个不同的人执行的11个具有挑战性的手势,总共包含20210个手势实例。在11只手上,手势和准确率分别达到87%(26个用户)和92%(单个用户)。此外,该预测算法已在GreenWaves Technologies的GAP8并行超低功耗处理器上实现,表明实时预测是可行的,整个手势预测神经网络的功耗仅为21mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Power Embedded Gesture Recognition Using Novel Short-Range Radar Sensors
This work proposes a low-power high-accuracy embedded hand-gesture recognition using low power short-range radar sensors. The hardware and software match the requirements for battery-operated wearable devices. A 2D Convolutional Neural Network (CNN) using range frequency Doppler features is combined with a Temporal Convolutional Neural Network (TCN) for time sequence prediction. The final algorithm has a model size of only 45723 parameters, yielding a memory footprint of only 91kB. Two datasets containing 11 challenging hand gestures performed by 26 different people have been recorded containing a total of 20210 gesture instances. On the 11 hands, gestures and an accuracy of 87% (26 users) and 92% (single user) have been achieved. Furthermore, the prediction algorithm has been implemented in the GAP8 Parallel Ultra-Low-Power processor by GreenWaves Technologies, showing that live-prediction is feasible with only 21mW of power consumption for the full gesture prediction neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信