氨基酸与氨基恶唑衍生物的相互作用:通过计算分析实现的共晶体形成和预生物影响。

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY
Nieves Lavado, Juan García de la Concepción, Reyes Babiano, Pedro Cintas, Mark E Light
{"title":"氨基酸与氨基恶唑衍生物的相互作用:通过计算分析实现的共晶体形成和预生物影响。","authors":"Nieves Lavado, Juan García de la Concepción, Reyes Babiano, Pedro Cintas, Mark E Light","doi":"10.1007/s11084-019-09582-9","DOIUrl":null,"url":null,"abstract":"<p><p>In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a potential prebiotic scenario where aminoxazolines might have also played further roles as complexing and/or sequestering agents of other primeval blocks, namely amino acids. To this end, a bis-aminoxazoline derivative, generated from dihydroxyacetone and cyanamide, gives rise to stable co-crystal forms with dicarboxylic amino acids (Asp and Glu), while ionic interactions owing to proton transfer are inferred from spectroscopic data in aqueous solution. The structure of a 1:2 aminoxazoline: aspartic acid complex, discussed in detail, was elucidated by X-ray diffractometry. Optimized geometries of such ionic structures with bulk aqueous solvation were assessed by DFT calculations, which disclose preferential arrangements that validate the experimental data. Peripherally, we were able to detect in a few cases amino acid dimerization (i.e. dipeptide formation) after prolonged incubation with the bis-aminoxazole derivative. A mechanistic simulation aided by computation provides some predictive conclusions for future explorations and catalytic design.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11084-019-09582-9","citationCount":"1","resultStr":"{\"title\":\"Interactions of Amino Acids and Aminoxazole Derivatives: Cocrystal Formation and Prebiotic Implications Enabled by Computational Analysis.\",\"authors\":\"Nieves Lavado, Juan García de la Concepción, Reyes Babiano, Pedro Cintas, Mark E Light\",\"doi\":\"10.1007/s11084-019-09582-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a potential prebiotic scenario where aminoxazolines might have also played further roles as complexing and/or sequestering agents of other primeval blocks, namely amino acids. To this end, a bis-aminoxazoline derivative, generated from dihydroxyacetone and cyanamide, gives rise to stable co-crystal forms with dicarboxylic amino acids (Asp and Glu), while ionic interactions owing to proton transfer are inferred from spectroscopic data in aqueous solution. The structure of a 1:2 aminoxazoline: aspartic acid complex, discussed in detail, was elucidated by X-ray diffractometry. Optimized geometries of such ionic structures with bulk aqueous solvation were assessed by DFT calculations, which disclose preferential arrangements that validate the experimental data. Peripherally, we were able to detect in a few cases amino acid dimerization (i.e. dipeptide formation) after prolonged incubation with the bis-aminoxazole derivative. A mechanistic simulation aided by computation provides some predictive conclusions for future explorations and catalytic design.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11084-019-09582-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-019-09582-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-019-09582-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/7/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

根据由小分子糖类衍生出的氨基恶唑直接组装核苷前体的中间产物的推测,我们在此展示了一种潜在的生物前情景,即氨基恶唑啉还可能作为其他原生块(即氨基酸)的复合剂和/或封存剂发挥进一步的作用。为此,一种由二羟基丙酮和氰酰胺生成的双氨基恶唑啉衍生物与二羧酸氨基酸(Asp 和 Glu)形成了稳定的共晶体形式,同时根据水溶液中的光谱数据推断出了质子转移引起的离子相互作用。详细讨论的 1:2 氨基恶唑啉:天冬氨酸复合物的结构是通过 X 射线衍射法阐明的。通过 DFT 计算,我们评估了这种具有大量水溶液的离子结构的优化几何形状,发现了验证实验数据的优先排列。此外,在与双氨基噁唑衍生物长时间共振后,我们还能在一些情况下检测到氨基酸二聚化(即二肽的形成)。在计算的辅助下进行的机理模拟为今后的探索和催化设计提供了一些预测性结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions of Amino Acids and Aminoxazole Derivatives: Cocrystal Formation and Prebiotic Implications Enabled by Computational Analysis.

In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a potential prebiotic scenario where aminoxazolines might have also played further roles as complexing and/or sequestering agents of other primeval blocks, namely amino acids. To this end, a bis-aminoxazoline derivative, generated from dihydroxyacetone and cyanamide, gives rise to stable co-crystal forms with dicarboxylic amino acids (Asp and Glu), while ionic interactions owing to proton transfer are inferred from spectroscopic data in aqueous solution. The structure of a 1:2 aminoxazoline: aspartic acid complex, discussed in detail, was elucidated by X-ray diffractometry. Optimized geometries of such ionic structures with bulk aqueous solvation were assessed by DFT calculations, which disclose preferential arrangements that validate the experimental data. Peripherally, we were able to detect in a few cases amino acid dimerization (i.e. dipeptide formation) after prolonged incubation with the bis-aminoxazole derivative. A mechanistic simulation aided by computation provides some predictive conclusions for future explorations and catalytic design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信