Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, D. Wilkins, C. Corminboeuf, M. Ceriotti
{"title":"电子密度的可转移机器学习模型","authors":"Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, D. Wilkins, C. Corminboeuf, M. Ceriotti","doi":"10.26434/chemrxiv.7093589.v1","DOIUrl":null,"url":null,"abstract":"We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":"{\"title\":\"A Transferable Machine-Learning Model of the Electron Density\",\"authors\":\"Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, D. Wilkins, C. Corminboeuf, M. Ceriotti\",\"doi\":\"10.26434/chemrxiv.7093589.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv.7093589.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv.7093589.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Transferable Machine-Learning Model of the Electron Density
We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost.