{"title":"$K$-平均凸集和$K$-向外最小化集","authors":"A. Cesaroni, M. Novaga","doi":"10.4171/ifb/466","DOIUrl":null,"url":null,"abstract":"We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. \nThe main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"$K$-mean convex and $K$-outward minimizing sets\",\"authors\":\"A. Cesaroni, M. Novaga\",\"doi\":\"10.4171/ifb/466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. \\nThe main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/466\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/466","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality.
The main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.