基于表面等离子体共振的d形光子晶体光纤有毒金属离子(砷)传感器

Ghufran Mohammed Jassam, Soudad Salman Ahmed
{"title":"基于表面等离子体共振的d形光子晶体光纤有毒金属离子(砷)传感器","authors":"Ghufran Mohammed Jassam, Soudad Salman Ahmed","doi":"10.30723/ijp.v21i2.1120","DOIUrl":null,"url":null,"abstract":"In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the structural characteristics on the resonant spectra are also researched in order to improve sensing performance. The greatest amplitude sensitivity  was 99.2 RIU-1 and maximum resolution was 4 x 10-5 RIU achieved within the detection range (1.351-1.363).","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"D-Shaped Photonic Crystal Fiber Toxic Metal Ions (Arsenic) Sensor Based on Surface Plasmon Resonance\",\"authors\":\"Ghufran Mohammed Jassam, Soudad Salman Ahmed\",\"doi\":\"10.30723/ijp.v21i2.1120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the structural characteristics on the resonant spectra are also researched in order to improve sensing performance. The greatest amplitude sensitivity  was 99.2 RIU-1 and maximum resolution was 4 x 10-5 RIU achieved within the detection range (1.351-1.363).\",\"PeriodicalId\":14653,\"journal\":{\"name\":\"Iraqi Journal of Physics (IJP)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Physics (IJP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30723/ijp.v21i2.1120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v21i2.1120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于表面等离子体共振(SPR)技术的光子晶体光纤(PCF)传感器。在d型光子晶体光纤(PCF)上沉积了一层薄薄的金(Au),并在其表面包裹了一层厚度为40nm的等离子体化学稳定金材料。利用COMSOL软件对灵敏度(包括波长灵敏度、幅度灵敏度)和分辨率等性能参数进行仿真评价。采用有限元方法建立了该传感器,并对其进行了数值验证。结果表明,包覆金的d型光子晶体光纤表面可以作为传感器探测有毒金属离子的折射率。为了提高传感性能,还研究了结构特性对谐振光谱的影响。在1.351 ~ 1.363的检测范围内,最大振幅灵敏度为99.2 RIU-1,最大分辨率为4 × 10-5 RIU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D-Shaped Photonic Crystal Fiber Toxic Metal Ions (Arsenic) Sensor Based on Surface Plasmon Resonance
In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the structural characteristics on the resonant spectra are also researched in order to improve sensing performance. The greatest amplitude sensitivity  was 99.2 RIU-1 and maximum resolution was 4 x 10-5 RIU achieved within the detection range (1.351-1.363).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信