不同电极对电絮凝法去除腐植酸的影响

mohammadreza khosraviniko, Farhad Asgharyan, B. Anvaripour, I. Danaee
{"title":"不同电极对电絮凝法去除腐植酸的影响","authors":"mohammadreza khosraviniko, Farhad Asgharyan, B. Anvaripour, I. Danaee","doi":"10.22050/IJOGST.2018.65739","DOIUrl":null,"url":null,"abstract":"The present study is about the reduction of humic acids (HA) by electrocoagulation (EC) method. Undesirable color, odor, taste, reacting with chlorine to produce toxic materials in water, and making a complex with heavy metal ions are some unfavorable environmental consequences of HA. Platinum and graphite as anode electrodes and platinum, titanium, and aluminum as cathode electrodes were used for this purpose. Also, solutions consisting of sodium sulfate (Na2SO4), as the electrolyte support, and humic acids at a concentration of 30 mg.l-1 were used in the reduction tests. We investigated the best condition for pollutant removal at pH values of 3, 5, and 7 and voltages of 5, 10, and 18. The samples were taken during the electrolysis and were analyzed by the pH meter and UV-visible spectrophotometer. Moreover, the oxidation phenomena on anodes surface were studied by cyclic voltammetry tests. The results confirm that the Gr/Al electrodes by coagulation phenomena shows the best performance in the elimination of HA at an electrolyte support concentration of 0.02 molar after approximately 23 min at a pH of 7 and a voltage equal to 10 V.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"145 1","pages":"52-63"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Different Electrodes on Humic Acid Removal by Electrocoagulation\",\"authors\":\"mohammadreza khosraviniko, Farhad Asgharyan, B. Anvaripour, I. Danaee\",\"doi\":\"10.22050/IJOGST.2018.65739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is about the reduction of humic acids (HA) by electrocoagulation (EC) method. Undesirable color, odor, taste, reacting with chlorine to produce toxic materials in water, and making a complex with heavy metal ions are some unfavorable environmental consequences of HA. Platinum and graphite as anode electrodes and platinum, titanium, and aluminum as cathode electrodes were used for this purpose. Also, solutions consisting of sodium sulfate (Na2SO4), as the electrolyte support, and humic acids at a concentration of 30 mg.l-1 were used in the reduction tests. We investigated the best condition for pollutant removal at pH values of 3, 5, and 7 and voltages of 5, 10, and 18. The samples were taken during the electrolysis and were analyzed by the pH meter and UV-visible spectrophotometer. Moreover, the oxidation phenomena on anodes surface were studied by cyclic voltammetry tests. The results confirm that the Gr/Al electrodes by coagulation phenomena shows the best performance in the elimination of HA at an electrolyte support concentration of 0.02 molar after approximately 23 min at a pH of 7 and a voltage equal to 10 V.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"145 1\",\"pages\":\"52-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2018.65739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2018.65739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了电凝法还原腐植酸(HA)的方法。不良的色、臭、味、与氯反应在水中产生有毒物质、与重金属离子形成络合物是HA对环境的不利影响。用铂和石墨作阳极电极,用铂、钛和铝作阴极电极。此外,溶液由硫酸钠(Na2SO4),作为电解质载体,腐植酸的浓度为30毫克。L-1用于还原试验。我们研究了pH值为3、5和7,电压为5、10和18时去除污染物的最佳条件。电解过程中取样品,用pH计和紫外可见分光光度计对样品进行分析。通过循环伏安法研究了阳极表面的氧化现象。结果表明,在pH = 7、电压= 10 V条件下,当电解质负载浓度为0.02 mol / l,约23 min后,混凝法制备的Gr/Al电极对HA的去除效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Different Electrodes on Humic Acid Removal by Electrocoagulation
The present study is about the reduction of humic acids (HA) by electrocoagulation (EC) method. Undesirable color, odor, taste, reacting with chlorine to produce toxic materials in water, and making a complex with heavy metal ions are some unfavorable environmental consequences of HA. Platinum and graphite as anode electrodes and platinum, titanium, and aluminum as cathode electrodes were used for this purpose. Also, solutions consisting of sodium sulfate (Na2SO4), as the electrolyte support, and humic acids at a concentration of 30 mg.l-1 were used in the reduction tests. We investigated the best condition for pollutant removal at pH values of 3, 5, and 7 and voltages of 5, 10, and 18. The samples were taken during the electrolysis and were analyzed by the pH meter and UV-visible spectrophotometer. Moreover, the oxidation phenomena on anodes surface were studied by cyclic voltammetry tests. The results confirm that the Gr/Al electrodes by coagulation phenomena shows the best performance in the elimination of HA at an electrolyte support concentration of 0.02 molar after approximately 23 min at a pH of 7 and a voltage equal to 10 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信