{"title":"超椭圆模曲线上的Weierstrass点","authors":"D. Jeon","doi":"10.4134/CKMS.2015.30.4.379","DOIUrl":null,"url":null,"abstract":"In this paper, we find all Weierstrass points on the hyperelliptic modular curves X0ðNÞ whose hyperelliptic involutions are non-exceptional, i.e., induced by matrices in GL2ðRÞ.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weierstrass points on hyperelliptic modular curves\",\"authors\":\"D. Jeon\",\"doi\":\"10.4134/CKMS.2015.30.4.379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we find all Weierstrass points on the hyperelliptic modular curves X0ðNÞ whose hyperelliptic involutions are non-exceptional, i.e., induced by matrices in GL2ðRÞ.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.2015.30.4.379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/CKMS.2015.30.4.379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weierstrass points on hyperelliptic modular curves
In this paper, we find all Weierstrass points on the hyperelliptic modular curves X0ðNÞ whose hyperelliptic involutions are non-exceptional, i.e., induced by matrices in GL2ðRÞ.