咖啡渣活性炭与氧化铁复合在紫外和超声下降解苯酚的性能研究

L. Dinira, Barlah Rumhayati, A. Wiryawan
{"title":"咖啡渣活性炭与氧化铁复合在紫外和超声下降解苯酚的性能研究","authors":"L. Dinira, Barlah Rumhayati, A. Wiryawan","doi":"10.21776/ub.jpacr.2021.010.02.575","DOIUrl":null,"url":null,"abstract":"Coffee consumption over the past four years has continued to increase the amount of used coffee grounds. Usually, the used coffee grounds are simply thrown away. In fact, it can still be used as other materials that are more efficient and environmentally friendly, such as activated carbon. Activated carbon can be utilized as an adsorbent to adsorb compounds that are carcinogenic and potentially last a long time in the environment, such as phenols. Phenol decomposition through chemical can be carried out by Advanced Oxidation Process (AOP) which utilize hydroxyl radicals. This method used a catalyst such as iron(III) oxide under ultraviolet light. Phenol decomposition can also be carried out using ultrasound. This study presents the performance of the combination of activated carbon-catalyst with ultrasound in phenol decomposition. The results showed that the mass of the composite influenced the 0.1 M phenol degradation by the activated carbon–iron(III) oxide assisted with ultraviolet light, ultrasound, and 0.01 M hydrogen peroxide. for 45 minutes. The best degradation of phenol was obtained when 0.5 g adsorbent was applied with the adsorption capacity of phenol was 704.37 mg/g. The concentration of hydrogen peroxide also affects the decomposition of phenol in solution. From the variation of the hydrogen peroxide solution used (0.01; 0.02; and 0.03 M), the optimal concentration in degrading phenol was 0.01 M with the adsorption capacity of phenol was 393.70 mg/g.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Performance of Activated Carbon from Used Coffee Grounds Combined with Iron(III) Oxide under UV Light and Ultrasound for Phenol Degradation\",\"authors\":\"L. Dinira, Barlah Rumhayati, A. Wiryawan\",\"doi\":\"10.21776/ub.jpacr.2021.010.02.575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coffee consumption over the past four years has continued to increase the amount of used coffee grounds. Usually, the used coffee grounds are simply thrown away. In fact, it can still be used as other materials that are more efficient and environmentally friendly, such as activated carbon. Activated carbon can be utilized as an adsorbent to adsorb compounds that are carcinogenic and potentially last a long time in the environment, such as phenols. Phenol decomposition through chemical can be carried out by Advanced Oxidation Process (AOP) which utilize hydroxyl radicals. This method used a catalyst such as iron(III) oxide under ultraviolet light. Phenol decomposition can also be carried out using ultrasound. This study presents the performance of the combination of activated carbon-catalyst with ultrasound in phenol decomposition. The results showed that the mass of the composite influenced the 0.1 M phenol degradation by the activated carbon–iron(III) oxide assisted with ultraviolet light, ultrasound, and 0.01 M hydrogen peroxide. for 45 minutes. The best degradation of phenol was obtained when 0.5 g adsorbent was applied with the adsorption capacity of phenol was 704.37 mg/g. The concentration of hydrogen peroxide also affects the decomposition of phenol in solution. From the variation of the hydrogen peroxide solution used (0.01; 0.02; and 0.03 M), the optimal concentration in degrading phenol was 0.01 M with the adsorption capacity of phenol was 393.70 mg/g.\",\"PeriodicalId\":22728,\"journal\":{\"name\":\"The Journal of Pure and Applied Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Pure and Applied Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/ub.jpacr.2021.010.02.575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2021.010.02.575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的四年里,咖啡消费量不断增加,咖啡渣的使用量也在不断增加。通常,用过的咖啡渣会被直接扔掉。事实上,它仍然可以作为其他更高效、更环保的材料使用,比如活性炭。活性炭可以作为一种吸附剂,吸附在环境中具有致癌性和可能长期存在的化合物,如酚类。苯酚的化学分解可以通过利用羟基自由基的高级氧化法(AOP)来实现。该方法在紫外光下使用氧化铁(III)等催化剂。苯酚分解也可以利用超声波进行。研究了活性炭催化剂与超声波结合在苯酚分解中的性能。结果表明,复合材料的质量影响了活性炭-氧化铁(III)在紫外光、超声波和0.01 M过氧化氢的辅助下对0.1 M苯酚的降解。45分钟。当吸附剂用量为0.5 g时,对苯酚的吸附量为704.37 mg/g,对苯酚的降解效果最佳。过氧化氢的浓度也会影响苯酚在溶液中的分解。从过氧化氢溶液使用的变化(0.01;0.02;0.03 M),降解苯酚的最佳浓度为0.01 M,对苯酚的吸附量为393.70 mg/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Performance of Activated Carbon from Used Coffee Grounds Combined with Iron(III) Oxide under UV Light and Ultrasound for Phenol Degradation
Coffee consumption over the past four years has continued to increase the amount of used coffee grounds. Usually, the used coffee grounds are simply thrown away. In fact, it can still be used as other materials that are more efficient and environmentally friendly, such as activated carbon. Activated carbon can be utilized as an adsorbent to adsorb compounds that are carcinogenic and potentially last a long time in the environment, such as phenols. Phenol decomposition through chemical can be carried out by Advanced Oxidation Process (AOP) which utilize hydroxyl radicals. This method used a catalyst such as iron(III) oxide under ultraviolet light. Phenol decomposition can also be carried out using ultrasound. This study presents the performance of the combination of activated carbon-catalyst with ultrasound in phenol decomposition. The results showed that the mass of the composite influenced the 0.1 M phenol degradation by the activated carbon–iron(III) oxide assisted with ultraviolet light, ultrasound, and 0.01 M hydrogen peroxide. for 45 minutes. The best degradation of phenol was obtained when 0.5 g adsorbent was applied with the adsorption capacity of phenol was 704.37 mg/g. The concentration of hydrogen peroxide also affects the decomposition of phenol in solution. From the variation of the hydrogen peroxide solution used (0.01; 0.02; and 0.03 M), the optimal concentration in degrading phenol was 0.01 M with the adsorption capacity of phenol was 393.70 mg/g.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信