不可分解可分离系统与Dirac算子的高阶对称性

M. Fels, N. Kamran
{"title":"不可分解可分离系统与Dirac算子的高阶对称性","authors":"M. Fels, N. Kamran","doi":"10.1098/rspa.1990.0032","DOIUrl":null,"url":null,"abstract":"It is shown that there exist separable systems for the Dirac operator on four-dimensional lorentzian spin manifolds that are not factorizable in the sense of Miller. The symmetry operators associated to these new separable systems are of higher order than the Dirac operator. They are characterized in the second-order case in terms of quadratic first integrals of the geodesic flow satisfying additional invariant conditions.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":"14 1","pages":"229 - 249"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Non-factorizable separable systems and higher-order symmetries of the Dirac operator\",\"authors\":\"M. Fels, N. Kamran\",\"doi\":\"10.1098/rspa.1990.0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that there exist separable systems for the Dirac operator on four-dimensional lorentzian spin manifolds that are not factorizable in the sense of Miller. The symmetry operators associated to these new separable systems are of higher order than the Dirac operator. They are characterized in the second-order case in terms of quadratic first integrals of the geodesic flow satisfying additional invariant conditions.\",\"PeriodicalId\":20605,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"volume\":\"14 1\",\"pages\":\"229 - 249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.1990.0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

证明了四维洛伦兹自旋流形上的狄拉克算子存在米勒意义上不可因式分解的可分离系统。与这些新分离系统相关的对称算子比狄拉克算子具有更高阶。在二阶情况下,它们被描述为满足附加不变条件的测地线流的二次一阶积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-factorizable separable systems and higher-order symmetries of the Dirac operator
It is shown that there exist separable systems for the Dirac operator on four-dimensional lorentzian spin manifolds that are not factorizable in the sense of Miller. The symmetry operators associated to these new separable systems are of higher order than the Dirac operator. They are characterized in the second-order case in terms of quadratic first integrals of the geodesic flow satisfying additional invariant conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信