Hilbert空间中不动点问题和广义平衡问题解集的公共元构造

IF 0.1 Q4 MATHEMATICS
M. A. A. Khan
{"title":"Hilbert空间中不动点问题和广义平衡问题解集的公共元构造","authors":"M. A. A. Khan","doi":"10.1515/AUPCSM-2016-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose and analyse an iterative algorithm for the approximation of a common solution for a finite family of k-strict pseudocontractions and two finite families of generalized equilibrium problems in the setting of Hilbert spaces. Strong convergence results of the proposed iterative algorithm together with some applications to solve the variational inequality problems are established in such setting. Our results generalize and improve various existing results in the current literature.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"35 1","pages":"79 - 96"},"PeriodicalIF":0.1000,"publicationDate":"2016-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a common element for the set of solutions of fixed point problems and generalized equilibrium problems in Hilbert spaces\",\"authors\":\"M. A. A. Khan\",\"doi\":\"10.1515/AUPCSM-2016-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose and analyse an iterative algorithm for the approximation of a common solution for a finite family of k-strict pseudocontractions and two finite families of generalized equilibrium problems in the setting of Hilbert spaces. Strong convergence results of the proposed iterative algorithm together with some applications to solve the variational inequality problems are established in such setting. Our results generalize and improve various existing results in the current literature.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"35 1\",\"pages\":\"79 - 96\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/AUPCSM-2016-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/AUPCSM-2016-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出并分析了Hilbert空间中一类k-严格伪压缩有限族和一类广义平衡问题有限族的公解逼近的迭代算法。在这种情况下,给出了该迭代算法的强收敛性结果,并给出了该算法在求解变分不等式问题中的一些应用。我们的结果概括和改进了当前文献中各种现有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a common element for the set of solutions of fixed point problems and generalized equilibrium problems in Hilbert spaces
Abstract In this paper, we propose and analyse an iterative algorithm for the approximation of a common solution for a finite family of k-strict pseudocontractions and two finite families of generalized equilibrium problems in the setting of Hilbert spaces. Strong convergence results of the proposed iterative algorithm together with some applications to solve the variational inequality problems are established in such setting. Our results generalize and improve various existing results in the current literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信