Denisa Cîrcioban, I. Ledeți, G. Vlase, T. Vlase, Adriana Ledeți
{"title":"乙酰胆碱酯酶抑制剂他克林的固体稳定性及制剂研究","authors":"Denisa Cîrcioban, I. Ledeți, G. Vlase, T. Vlase, Adriana Ledeți","doi":"10.35995/TMJ20200104","DOIUrl":null,"url":null,"abstract":"In this paper, the acetylcholinesterase inhibitor drug tacrine was investigated by two complementary instrumental techniques, namely infrared spectroscopy and thermal analysis, as pure drug and in solid binary mixtures with nine excipients frequently used in the pharmaceutical industry, namely starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30, fumed silica (Aerosil), talc, anhydrous lactose, magnesium stearate, mannitol and calcium lactate pentahydrate. The corroboration of obtained data by the two complementary methods confirmed the incompatibility of this drug with anhydrous lactose, mannitol, magnesium stearate and calcium lactate under both ambient conditions and thermal stress, and thermally induced interactions between tacrine and silica. In the development of new generic solid formulations, four of the investigated excipients (i.e., starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30 and talc) can be used, since they are compatible with tacrine under ambient conditions as well as under thermal stress.","PeriodicalId":34611,"journal":{"name":"Timisoara Medical Journal","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid State Stability and Preformulation Studies for Acetylcholinesterase Inhibitor Drug Tacrine\",\"authors\":\"Denisa Cîrcioban, I. Ledeți, G. Vlase, T. Vlase, Adriana Ledeți\",\"doi\":\"10.35995/TMJ20200104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the acetylcholinesterase inhibitor drug tacrine was investigated by two complementary instrumental techniques, namely infrared spectroscopy and thermal analysis, as pure drug and in solid binary mixtures with nine excipients frequently used in the pharmaceutical industry, namely starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30, fumed silica (Aerosil), talc, anhydrous lactose, magnesium stearate, mannitol and calcium lactate pentahydrate. The corroboration of obtained data by the two complementary methods confirmed the incompatibility of this drug with anhydrous lactose, mannitol, magnesium stearate and calcium lactate under both ambient conditions and thermal stress, and thermally induced interactions between tacrine and silica. In the development of new generic solid formulations, four of the investigated excipients (i.e., starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30 and talc) can be used, since they are compatible with tacrine under ambient conditions as well as under thermal stress.\",\"PeriodicalId\":34611,\"journal\":{\"name\":\"Timisoara Medical Journal\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Timisoara Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35995/TMJ20200104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Timisoara Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35995/TMJ20200104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solid State Stability and Preformulation Studies for Acetylcholinesterase Inhibitor Drug Tacrine
In this paper, the acetylcholinesterase inhibitor drug tacrine was investigated by two complementary instrumental techniques, namely infrared spectroscopy and thermal analysis, as pure drug and in solid binary mixtures with nine excipients frequently used in the pharmaceutical industry, namely starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30, fumed silica (Aerosil), talc, anhydrous lactose, magnesium stearate, mannitol and calcium lactate pentahydrate. The corroboration of obtained data by the two complementary methods confirmed the incompatibility of this drug with anhydrous lactose, mannitol, magnesium stearate and calcium lactate under both ambient conditions and thermal stress, and thermally induced interactions between tacrine and silica. In the development of new generic solid formulations, four of the investigated excipients (i.e., starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30 and talc) can be used, since they are compatible with tacrine under ambient conditions as well as under thermal stress.