{"title":"具有密度的欧几里得空间中的偏移直纹曲面","authors":"Neslihan Ulucan, M. Akyiğit","doi":"10.2478/auom-2021-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, offset ruled surfaces in these spaces are defined by using the geometry of ruled surfaces in Euclidean space with density. The mean curvature and Gaussian curvature of these surfaces are studied. In addition, the relationships between the mean curvature and mean curvature with density, and the Gaussian curvature and the Gaussian curvature with density of the offset ruled surfaces in E3 with density ez and e−x2−y2 are given.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"22 1","pages":"219 - 233"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offset Ruled Surface in Euclidean Space with Density\",\"authors\":\"Neslihan Ulucan, M. Akyiğit\",\"doi\":\"10.2478/auom-2021-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, offset ruled surfaces in these spaces are defined by using the geometry of ruled surfaces in Euclidean space with density. The mean curvature and Gaussian curvature of these surfaces are studied. In addition, the relationships between the mean curvature and mean curvature with density, and the Gaussian curvature and the Gaussian curvature with density of the offset ruled surfaces in E3 with density ez and e−x2−y2 are given.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"22 1\",\"pages\":\"219 - 233\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Offset Ruled Surface in Euclidean Space with Density
Abstract In this paper, offset ruled surfaces in these spaces are defined by using the geometry of ruled surfaces in Euclidean space with density. The mean curvature and Gaussian curvature of these surfaces are studied. In addition, the relationships between the mean curvature and mean curvature with density, and the Gaussian curvature and the Gaussian curvature with density of the offset ruled surfaces in E3 with density ez and e−x2−y2 are given.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.