{"title":"增加LNG生产部分的现有运行LNG装置的技术经济演变","authors":"O. Sabbagh, M. Fanaei, A. Arjomand","doi":"10.2516/ogst/2020018","DOIUrl":null,"url":null,"abstract":"Natural gas is the fastest-growing fossil fuel and LNG is playing a growing role in the world’s gas supply. The liquefaction process is also by far the most energy-consuming part of the LNG chain. It is thus a priority today for the gas industry to decrease the cost and improve the efficiency of the liquefaction process of a plant. In this way, a novel techno-economic evolution of an existing NGL plant with adding an appropriate LNG production part is presented. Concerning the availability of propane, use of existing equipments and conditions of no structural changes in the existing installation, C3MR is used as the refrigeration system. For full recognition of the process, a high-accuracy surrogate model based on D-optimal approach is developed. MR composition (nitrogen, methane, ethane, and propane), inlet gas pressure of the LNG production part, demethanizer pressure, and high and low pressure of MR as the eight manipulated variables of the surrogate model predict the earned profit of the integrated plant. To increase profit, a hybrid GA-SQP optimization method is used. The results show that the earned profit of the optimized proposed plant with the LNG production capacity of 3.33 MTPA is 60.2% more than the existing NGL plant. In addition to increased earned profit, the thermodynamic efficiency is improved in the liquefaction section, too. Furthermore, the SPC value of 0.347 kWh kg−1 LNG shows that the optimized plant has acceptable liquefaction efficiency. According to the optimization results, mixture variables are more effective than process variables on the earned profit. It is noticeable that increasing the ethane recovery not always increases profit in such integrated units.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"63 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Techno-economic evolution of an existing operational NGL plant with adding LNG production part\",\"authors\":\"O. Sabbagh, M. Fanaei, A. Arjomand\",\"doi\":\"10.2516/ogst/2020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural gas is the fastest-growing fossil fuel and LNG is playing a growing role in the world’s gas supply. The liquefaction process is also by far the most energy-consuming part of the LNG chain. It is thus a priority today for the gas industry to decrease the cost and improve the efficiency of the liquefaction process of a plant. In this way, a novel techno-economic evolution of an existing NGL plant with adding an appropriate LNG production part is presented. Concerning the availability of propane, use of existing equipments and conditions of no structural changes in the existing installation, C3MR is used as the refrigeration system. For full recognition of the process, a high-accuracy surrogate model based on D-optimal approach is developed. MR composition (nitrogen, methane, ethane, and propane), inlet gas pressure of the LNG production part, demethanizer pressure, and high and low pressure of MR as the eight manipulated variables of the surrogate model predict the earned profit of the integrated plant. To increase profit, a hybrid GA-SQP optimization method is used. The results show that the earned profit of the optimized proposed plant with the LNG production capacity of 3.33 MTPA is 60.2% more than the existing NGL plant. In addition to increased earned profit, the thermodynamic efficiency is improved in the liquefaction section, too. Furthermore, the SPC value of 0.347 kWh kg−1 LNG shows that the optimized plant has acceptable liquefaction efficiency. According to the optimization results, mixture variables are more effective than process variables on the earned profit. It is noticeable that increasing the ethane recovery not always increases profit in such integrated units.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2020018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Techno-economic evolution of an existing operational NGL plant with adding LNG production part
Natural gas is the fastest-growing fossil fuel and LNG is playing a growing role in the world’s gas supply. The liquefaction process is also by far the most energy-consuming part of the LNG chain. It is thus a priority today for the gas industry to decrease the cost and improve the efficiency of the liquefaction process of a plant. In this way, a novel techno-economic evolution of an existing NGL plant with adding an appropriate LNG production part is presented. Concerning the availability of propane, use of existing equipments and conditions of no structural changes in the existing installation, C3MR is used as the refrigeration system. For full recognition of the process, a high-accuracy surrogate model based on D-optimal approach is developed. MR composition (nitrogen, methane, ethane, and propane), inlet gas pressure of the LNG production part, demethanizer pressure, and high and low pressure of MR as the eight manipulated variables of the surrogate model predict the earned profit of the integrated plant. To increase profit, a hybrid GA-SQP optimization method is used. The results show that the earned profit of the optimized proposed plant with the LNG production capacity of 3.33 MTPA is 60.2% more than the existing NGL plant. In addition to increased earned profit, the thermodynamic efficiency is improved in the liquefaction section, too. Furthermore, the SPC value of 0.347 kWh kg−1 LNG shows that the optimized plant has acceptable liquefaction efficiency. According to the optimization results, mixture variables are more effective than process variables on the earned profit. It is noticeable that increasing the ethane recovery not always increases profit in such integrated units.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.