Al-othmani Abdulwasea, Li Li, Waleed Salman Mohammed, A. S. Abdulghafour
{"title":"蓄热式减震器采用圆柱凸轮和槽运动转换","authors":"Al-othmani Abdulwasea, Li Li, Waleed Salman Mohammed, A. S. Abdulghafour","doi":"10.1515/ehs-2021-0074","DOIUrl":null,"url":null,"abstract":"Abstract The increasing demand for fossil fuels has led to an increase in their prices; therefore, the regenerative shock absorber (RSA) devices were designed in conjunction with the suspension system industry, in order to reduce the vibration produced whilst driving, which has become a major concern in automobile production. With regards to vehicle development, compared with the current technology, the subject matter of this paper has the following advantages: The current design relates to the RSAs for vehicles, which has an energy recovery function, a simple and new design, a longer life span, a low cost, and are lightweight. A 45° inclined long slot steering mechanism is used in this design to collect the vibration energy generated while driving the vehicle, improving the energy use rate and saving the amount of fuel that is consumed. The reciprocating linear motion in driving the vehicle is converted into a rotational movement. Peak efficiency of 50% and the average efficiency of 45% are demonstrated in the MATLAB system. It converts mechanical energy into electrical energy and restores energy vibration using a suspension shock absorber while driving, which improves energy use and provides greater comfort for passengers while the vehicle is in motion.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"27 1","pages":"179 - 191"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regenerative shock absorber using cylindrical cam and slot motion conversion\",\"authors\":\"Al-othmani Abdulwasea, Li Li, Waleed Salman Mohammed, A. S. Abdulghafour\",\"doi\":\"10.1515/ehs-2021-0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The increasing demand for fossil fuels has led to an increase in their prices; therefore, the regenerative shock absorber (RSA) devices were designed in conjunction with the suspension system industry, in order to reduce the vibration produced whilst driving, which has become a major concern in automobile production. With regards to vehicle development, compared with the current technology, the subject matter of this paper has the following advantages: The current design relates to the RSAs for vehicles, which has an energy recovery function, a simple and new design, a longer life span, a low cost, and are lightweight. A 45° inclined long slot steering mechanism is used in this design to collect the vibration energy generated while driving the vehicle, improving the energy use rate and saving the amount of fuel that is consumed. The reciprocating linear motion in driving the vehicle is converted into a rotational movement. Peak efficiency of 50% and the average efficiency of 45% are demonstrated in the MATLAB system. It converts mechanical energy into electrical energy and restores energy vibration using a suspension shock absorber while driving, which improves energy use and provides greater comfort for passengers while the vehicle is in motion.\",\"PeriodicalId\":36885,\"journal\":{\"name\":\"Energy Harvesting and Systems\",\"volume\":\"27 1\",\"pages\":\"179 - 191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Harvesting and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ehs-2021-0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2021-0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Regenerative shock absorber using cylindrical cam and slot motion conversion
Abstract The increasing demand for fossil fuels has led to an increase in their prices; therefore, the regenerative shock absorber (RSA) devices were designed in conjunction with the suspension system industry, in order to reduce the vibration produced whilst driving, which has become a major concern in automobile production. With regards to vehicle development, compared with the current technology, the subject matter of this paper has the following advantages: The current design relates to the RSAs for vehicles, which has an energy recovery function, a simple and new design, a longer life span, a low cost, and are lightweight. A 45° inclined long slot steering mechanism is used in this design to collect the vibration energy generated while driving the vehicle, improving the energy use rate and saving the amount of fuel that is consumed. The reciprocating linear motion in driving the vehicle is converted into a rotational movement. Peak efficiency of 50% and the average efficiency of 45% are demonstrated in the MATLAB system. It converts mechanical energy into electrical energy and restores energy vibration using a suspension shock absorber while driving, which improves energy use and provides greater comfort for passengers while the vehicle is in motion.