I型加载下三维平面裂纹的疲劳扩展路径

Véronique Lazarus
{"title":"I型加载下三维平面裂纹的疲劳扩展路径","authors":"Véronique Lazarus","doi":"10.1016/S1287-4620(99)90008-X","DOIUrl":null,"url":null,"abstract":"<div><p>The fatigue growth path of an arbitrary plane crack, loaded by some remote tensile uniform stress, is computed using a perturbation method derived from the three-dimensional weight-function theory of Rice (1985, 1989). First, the stress intensity factor and the weight function of the initial front are calculated. Then, the crack advance is determined by applying Paris' law. One advantage of the method is that only the meshing of the initial <em>front</em> is needed, allowing for the study of propagation on a large scale.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 13","pages":"Pages 1319-1324"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(99)90008-X","citationCount":"7","resultStr":"{\"title\":\"Fatigue propagation path of 3D plane cracks under mode I loading\",\"authors\":\"Véronique Lazarus\",\"doi\":\"10.1016/S1287-4620(99)90008-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fatigue growth path of an arbitrary plane crack, loaded by some remote tensile uniform stress, is computed using a perturbation method derived from the three-dimensional weight-function theory of Rice (1985, 1989). First, the stress intensity factor and the weight function of the initial front are calculated. Then, the crack advance is determined by applying Paris' law. One advantage of the method is that only the meshing of the initial <em>front</em> is needed, allowing for the study of propagation on a large scale.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 13\",\"pages\":\"Pages 1319-1324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(99)90008-X\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S128746209990008X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S128746209990008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用Rice(1985,1989)的三维权函数理论推导出的微扰方法,计算了任意平面裂纹在远距离拉伸均匀应力作用下的疲劳扩展路径。首先,计算了初始锋面的应力强度因子和权函数。然后,应用帕里斯定律确定裂缝推进速度。该方法的一个优点是只需要对初始锋面进行网格划分,从而可以进行大规模的传播研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue propagation path of 3D plane cracks under mode I loading

The fatigue growth path of an arbitrary plane crack, loaded by some remote tensile uniform stress, is computed using a perturbation method derived from the three-dimensional weight-function theory of Rice (1985, 1989). First, the stress intensity factor and the weight function of the initial front are calculated. Then, the crack advance is determined by applying Paris' law. One advantage of the method is that only the meshing of the initial front is needed, allowing for the study of propagation on a large scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信