{"title":"高级氧化法降解废水中聚乙烯醇的研究","authors":"Weihua Sun, Lu-jun Chen, Jianlong Wang","doi":"10.1515/jaots-2017-0018","DOIUrl":null,"url":null,"abstract":"Abstract Advanced oxidation processes (AOPs) constitute a promising technology to treat wastewater containing organic pollutants that are not easily biodegradable. They have received increasing attention in the research and development of wastewater treatment technologies in recent decades for their removal or degradation of recalcitrant pollutants or as pretreatments to convert pollutants into smaller compounds, which can be treated using conventional biological methods. Polyvinyl alcohol (PVA) is a typical refractory organic pollutant. It has received special attention due to its low biodegradability and the large amount of PVA-containing wastewater discharged from textile and paper mills. This review focuses on PVA removal and PVA wastewater pretreatment by AOPs, which include ozonation, Fenton oxidation, persulfate oxidation, ultrasound cavitation, ionizing radiation, photocatalytic oxidation, wet air oxidation and electrochemical oxidation. The mechanistic degradation pathways of PVA by AOPs are also discussed. In addition, a new classification of AOPs is applied for PVA treatment.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes\",\"authors\":\"Weihua Sun, Lu-jun Chen, Jianlong Wang\",\"doi\":\"10.1515/jaots-2017-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Advanced oxidation processes (AOPs) constitute a promising technology to treat wastewater containing organic pollutants that are not easily biodegradable. They have received increasing attention in the research and development of wastewater treatment technologies in recent decades for their removal or degradation of recalcitrant pollutants or as pretreatments to convert pollutants into smaller compounds, which can be treated using conventional biological methods. Polyvinyl alcohol (PVA) is a typical refractory organic pollutant. It has received special attention due to its low biodegradability and the large amount of PVA-containing wastewater discharged from textile and paper mills. This review focuses on PVA removal and PVA wastewater pretreatment by AOPs, which include ozonation, Fenton oxidation, persulfate oxidation, ultrasound cavitation, ionizing radiation, photocatalytic oxidation, wet air oxidation and electrochemical oxidation. The mechanistic degradation pathways of PVA by AOPs are also discussed. In addition, a new classification of AOPs is applied for PVA treatment.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2017-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2017-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
Abstract Advanced oxidation processes (AOPs) constitute a promising technology to treat wastewater containing organic pollutants that are not easily biodegradable. They have received increasing attention in the research and development of wastewater treatment technologies in recent decades for their removal or degradation of recalcitrant pollutants or as pretreatments to convert pollutants into smaller compounds, which can be treated using conventional biological methods. Polyvinyl alcohol (PVA) is a typical refractory organic pollutant. It has received special attention due to its low biodegradability and the large amount of PVA-containing wastewater discharged from textile and paper mills. This review focuses on PVA removal and PVA wastewater pretreatment by AOPs, which include ozonation, Fenton oxidation, persulfate oxidation, ultrasound cavitation, ionizing radiation, photocatalytic oxidation, wet air oxidation and electrochemical oxidation. The mechanistic degradation pathways of PVA by AOPs are also discussed. In addition, a new classification of AOPs is applied for PVA treatment.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs