纳米线生长过程中气-液-固接触处催化剂滴液的稳定性研究

Q4 Materials Science
V. Nebol’sin, Vladimir A. Yuriev, N. Swaikat, V. V. Korneeva, Evgeniy N. Vasnin
{"title":"纳米线生长过程中气-液-固接触处催化剂滴液的稳定性研究","authors":"V. Nebol’sin, Vladimir A. Yuriev, N. Swaikat, V. V. Korneeva, Evgeniy N. Vasnin","doi":"10.17725/rensit.2022.14.381","DOIUrl":null,"url":null,"abstract":"The paper provides a physical justification for the wettability conditions for a crystalline surface of a limited area by a small-volume catalytic liquid at the end of a growing nanowires (NW) characterized by a contact angle β, which contributes to a fundamental understanding of the nature of the contact angle of catalyst drops at the top of the NW. It is shown that under the conditions of stationary growth of NWs with a transverse singular face, there are only values of the angles β and γ (the angle of inclination of the side surface of the crystal to this face), which correspond to the minimum increment of the free energy of the three-phase system αLVcosβ + αSL = αSVcosγ and determine the stability of the catalyst drop at the top of the NW. With the growth of cylindrical NWs, the conditions of indifferent equilibrium are realized at the drop wetting perimeter. A drop, due to the dissolution of a crystallizing substance or its separation from a liquid solution, can take an equilibrium shape with a contact angle β that does not satisfy the equilibrium contact angle condition θ in the Young equation. A concentric break (rib) at the NW tip should increase the observed wetting angle θ and lead to contact angle hysteresis. The restrictions imposed on the value of the contact angle of a stable catalyst drop at the top of the NW are determined. The catalyst drop will take an equilibrium shape if the hysteresis angle β is in the range θ < β ≤ θ' + γ (θ' is the wetting angle of the NW side walls). For the growth of semiconductor NWs in the form of a straight cylinder, γ = 90° and therefore always β > 90°. It is shown that the direction of displacement of the three-phase line relative to the droplet surface is determined by the growth angle φ0: for the nonwetting growth mode of NWs (with a transverse face) φ0 = β – γ; for the wetting growth mode (with the end surface curved near the three-phase line)","PeriodicalId":37476,"journal":{"name":"Radioelektronika, Nanosistemy, Informacionnye Tehnologii","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Stability of Catalyst Drops at the Vapor-Liquid-Solid Contact during the Nanowires Growth\",\"authors\":\"V. Nebol’sin, Vladimir A. Yuriev, N. Swaikat, V. V. Korneeva, Evgeniy N. Vasnin\",\"doi\":\"10.17725/rensit.2022.14.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper provides a physical justification for the wettability conditions for a crystalline surface of a limited area by a small-volume catalytic liquid at the end of a growing nanowires (NW) characterized by a contact angle β, which contributes to a fundamental understanding of the nature of the contact angle of catalyst drops at the top of the NW. It is shown that under the conditions of stationary growth of NWs with a transverse singular face, there are only values of the angles β and γ (the angle of inclination of the side surface of the crystal to this face), which correspond to the minimum increment of the free energy of the three-phase system αLVcosβ + αSL = αSVcosγ and determine the stability of the catalyst drop at the top of the NW. With the growth of cylindrical NWs, the conditions of indifferent equilibrium are realized at the drop wetting perimeter. A drop, due to the dissolution of a crystallizing substance or its separation from a liquid solution, can take an equilibrium shape with a contact angle β that does not satisfy the equilibrium contact angle condition θ in the Young equation. A concentric break (rib) at the NW tip should increase the observed wetting angle θ and lead to contact angle hysteresis. The restrictions imposed on the value of the contact angle of a stable catalyst drop at the top of the NW are determined. The catalyst drop will take an equilibrium shape if the hysteresis angle β is in the range θ < β ≤ θ' + γ (θ' is the wetting angle of the NW side walls). For the growth of semiconductor NWs in the form of a straight cylinder, γ = 90° and therefore always β > 90°. It is shown that the direction of displacement of the three-phase line relative to the droplet surface is determined by the growth angle φ0: for the nonwetting growth mode of NWs (with a transverse face) φ0 = β – γ; for the wetting growth mode (with the end surface curved near the three-phase line)\",\"PeriodicalId\":37476,\"journal\":{\"name\":\"Radioelektronika, Nanosistemy, Informacionnye Tehnologii\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioelektronika, Nanosistemy, Informacionnye Tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17725/rensit.2022.14.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelektronika, Nanosistemy, Informacionnye Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17725/rensit.2022.14.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本文为接触角为β的纳米线末端的小体积催化液体在有限面积的晶体表面的润湿性条件提供了物理依据,这有助于对纳米线顶部催化剂滴接触角的性质有一个基本的理解。结果表明,在具有横向奇异面的NWs平稳生长条件下,只有角β和角γ(晶体侧面与该面的倾斜角)的值对应于三相体系自由能的最小增量αLVcosβ + αSL = αSVcosγ,并决定了NW顶部催化剂滴的稳定性。随着圆柱形NWs的增长,在水滴润湿周长处实现了非平衡条件。由于结晶物质的溶解或其从液体溶液中分离,液滴可以具有不满足杨格方程中平衡接触角条件θ的接触角β的平衡形状。NW尖端的同心断裂(肋)会增加观察到的润湿角θ,并导致接触角迟滞。确定了稳定催化剂在NW顶部的接触角值的限制条件。当滞回角β在θ < β≤θ′+ γ (θ′为NW侧壁润湿角)范围内时,催化剂液滴呈现平衡形态。对于以直圆柱体形式生长的半导体NWs, γ = 90°,因此总是β > 90°。结果表明:三相线相对于液滴表面的位移方向由生长角φ0决定:对于NWs(横向面)的非润湿生长方式φ0 = β - γ;为润湿生长方式(端面在三相线附近弯曲)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Stability of Catalyst Drops at the Vapor-Liquid-Solid Contact during the Nanowires Growth
The paper provides a physical justification for the wettability conditions for a crystalline surface of a limited area by a small-volume catalytic liquid at the end of a growing nanowires (NW) characterized by a contact angle β, which contributes to a fundamental understanding of the nature of the contact angle of catalyst drops at the top of the NW. It is shown that under the conditions of stationary growth of NWs with a transverse singular face, there are only values of the angles β and γ (the angle of inclination of the side surface of the crystal to this face), which correspond to the minimum increment of the free energy of the three-phase system αLVcosβ + αSL = αSVcosγ and determine the stability of the catalyst drop at the top of the NW. With the growth of cylindrical NWs, the conditions of indifferent equilibrium are realized at the drop wetting perimeter. A drop, due to the dissolution of a crystallizing substance or its separation from a liquid solution, can take an equilibrium shape with a contact angle β that does not satisfy the equilibrium contact angle condition θ in the Young equation. A concentric break (rib) at the NW tip should increase the observed wetting angle θ and lead to contact angle hysteresis. The restrictions imposed on the value of the contact angle of a stable catalyst drop at the top of the NW are determined. The catalyst drop will take an equilibrium shape if the hysteresis angle β is in the range θ < β ≤ θ' + γ (θ' is the wetting angle of the NW side walls). For the growth of semiconductor NWs in the form of a straight cylinder, γ = 90° and therefore always β > 90°. It is shown that the direction of displacement of the three-phase line relative to the droplet surface is determined by the growth angle φ0: for the nonwetting growth mode of NWs (with a transverse face) φ0 = β – γ; for the wetting growth mode (with the end surface curved near the three-phase line)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioelektronika, Nanosistemy, Informacionnye Tehnologii
Radioelektronika, Nanosistemy, Informacionnye Tehnologii Materials Science-Materials Science (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
38
期刊介绍: Journal “Radioelectronics. Nanosystems. Information Technologies” (abbr RENSIT) publishes original articles, reviews and brief reports, not previously published, on topical problems in radioelectronics (including biomedical) and fundamentals of information, nano- and biotechnologies and adjacent areas of physics and mathematics. The authors of the journal are academicians, corresponding members and foreign members of the Russian Academy of Natural Sciences (RANS) and their colleagues, as well as other russian and foreign authors on the proposal of the members of RANS, which can be obtained by the author before sending articles to the editor or after its arrival on the recommendation of a member of the editorial board or another member of the RANS, who gave the opinion on the article at the request of the editior. The editors will accept articles in both Russian and English languages. Articles are internally peer reviewed (double-blind peer review) by members of the Editorial Board. Some articles undergo external review, if necessary. Designed for researchers, graduate students, physics students of senior courses and teachers. It turns out 2 times a year (that includes 2 rooms)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信