{"title":"溅射法制备氧化薄膜层的评价","authors":"E. Horynová, I. Pelikánová","doi":"10.1109/ISSE.2019.8810224","DOIUrl":null,"url":null,"abstract":"Thin film layers are used in a wide range of fields (microchips, solar cells, etc.)because of the high dependency of their properties on the thickness of the layer. It is important to know how to achieve different thickness and quality of the layers by changing conditions of deposition. Samples of oxide thin film layers were prepared by magnetron sputtering. Two different materials were used - aluminum oxide and zinc oxide. Effect of different conditions (time and power of plasma)during the deposition was observed. The samples were evaluated from a few different points of view. Firstly, the thickness and capacity of each layer were measured. Thickness was also calculated from capacity and then compared to measured values. As expected, thickness increased with increasing time of deposition and with the increasing power of plasma during the deposition. Detail images of the layers were captured by an optical microscope and these images were processed in order to measure grain size. Average grain size was increasing with higher power during the deposition.","PeriodicalId":6674,"journal":{"name":"2019 42nd International Spring Seminar on Electronics Technology (ISSE)","volume":"300 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Oxide Thin Film Layers Prepared by Sputtering\",\"authors\":\"E. Horynová, I. Pelikánová\",\"doi\":\"10.1109/ISSE.2019.8810224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin film layers are used in a wide range of fields (microchips, solar cells, etc.)because of the high dependency of their properties on the thickness of the layer. It is important to know how to achieve different thickness and quality of the layers by changing conditions of deposition. Samples of oxide thin film layers were prepared by magnetron sputtering. Two different materials were used - aluminum oxide and zinc oxide. Effect of different conditions (time and power of plasma)during the deposition was observed. The samples were evaluated from a few different points of view. Firstly, the thickness and capacity of each layer were measured. Thickness was also calculated from capacity and then compared to measured values. As expected, thickness increased with increasing time of deposition and with the increasing power of plasma during the deposition. Detail images of the layers were captured by an optical microscope and these images were processed in order to measure grain size. Average grain size was increasing with higher power during the deposition.\",\"PeriodicalId\":6674,\"journal\":{\"name\":\"2019 42nd International Spring Seminar on Electronics Technology (ISSE)\",\"volume\":\"300 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 42nd International Spring Seminar on Electronics Technology (ISSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE.2019.8810224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Spring Seminar on Electronics Technology (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE.2019.8810224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Oxide Thin Film Layers Prepared by Sputtering
Thin film layers are used in a wide range of fields (microchips, solar cells, etc.)because of the high dependency of their properties on the thickness of the layer. It is important to know how to achieve different thickness and quality of the layers by changing conditions of deposition. Samples of oxide thin film layers were prepared by magnetron sputtering. Two different materials were used - aluminum oxide and zinc oxide. Effect of different conditions (time and power of plasma)during the deposition was observed. The samples were evaluated from a few different points of view. Firstly, the thickness and capacity of each layer were measured. Thickness was also calculated from capacity and then compared to measured values. As expected, thickness increased with increasing time of deposition and with the increasing power of plasma during the deposition. Detail images of the layers were captured by an optical microscope and these images were processed in order to measure grain size. Average grain size was increasing with higher power during the deposition.