基于参数自整定聚类的协同目标观测集中算法

J. Andrade, J. E. B. Maia, G. Campos
{"title":"基于参数自整定聚类的协同目标观测集中算法","authors":"J. Andrade, J. E. B. Maia, G. Campos","doi":"10.22456/2175-2745.107154","DOIUrl":null,"url":null,"abstract":"Clustering on target positions is a class of centralized algorithms used to calculate the surveillance robots' displacements in the Cooperative Target Observation (CTO) problem. This work proposes and evaluates Fuzzy C-means (FCM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with K-means (DBSk) based self-tuning clustering centralized algorithms for the CTO problem and compares its performances with that of K-means. Two random motion patterns are adopted for the targets: in free space or on a grid. As a contribution, the work allows identifying ranges of problem configuration parameters in which each algorithm shows the highest average performance. As a first conclusion, in the challenging situation in which the relative speed of the targets is high, and the relative sensor range of the surveillance is low, for which the existing algorithms present a substantial drop in performance, the FCM algorithm proposed outperforms the others. Finally, the DBSk algorithm adapts very well in low execution frequency, showing promising results in this challenging situation.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":"59 1","pages":"39-49"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Centralized Algorithms Based on Clustering with Self-tuning of Parameters for Cooperative Target Observation\",\"authors\":\"J. Andrade, J. E. B. Maia, G. Campos\",\"doi\":\"10.22456/2175-2745.107154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering on target positions is a class of centralized algorithms used to calculate the surveillance robots' displacements in the Cooperative Target Observation (CTO) problem. This work proposes and evaluates Fuzzy C-means (FCM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with K-means (DBSk) based self-tuning clustering centralized algorithms for the CTO problem and compares its performances with that of K-means. Two random motion patterns are adopted for the targets: in free space or on a grid. As a contribution, the work allows identifying ranges of problem configuration parameters in which each algorithm shows the highest average performance. As a first conclusion, in the challenging situation in which the relative speed of the targets is high, and the relative sensor range of the surveillance is low, for which the existing algorithms present a substantial drop in performance, the FCM algorithm proposed outperforms the others. Finally, the DBSk algorithm adapts very well in low execution frequency, showing promising results in this challenging situation.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":\"59 1\",\"pages\":\"39-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.107154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.107154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目标位置聚类算法是一类用于协同目标观测(CTO)问题中监控机器人位移计算的集中算法。本文提出并评价了基于K-means (DBSk)的CTO问题的模糊c均值(FCM)和基于密度的带噪声空间聚类(DBSCAN)自调优聚类集中算法,并将其与K-means的性能进行了比较。目标采用自由空间和网格两种随机运动模式。作为贡献,这项工作允许确定问题配置参数的范围,其中每个算法显示最高的平均性能。作为第一个结论,在目标相对速度大、监视相对传感器距离小、现有算法性能下降较大的挑战性情况下,本文提出的FCM算法优于其他算法。最后,DBSk算法在低执行频率下的适应性非常好,在这种具有挑战性的情况下显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centralized Algorithms Based on Clustering with Self-tuning of Parameters for Cooperative Target Observation
Clustering on target positions is a class of centralized algorithms used to calculate the surveillance robots' displacements in the Cooperative Target Observation (CTO) problem. This work proposes and evaluates Fuzzy C-means (FCM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with K-means (DBSk) based self-tuning clustering centralized algorithms for the CTO problem and compares its performances with that of K-means. Two random motion patterns are adopted for the targets: in free space or on a grid. As a contribution, the work allows identifying ranges of problem configuration parameters in which each algorithm shows the highest average performance. As a first conclusion, in the challenging situation in which the relative speed of the targets is high, and the relative sensor range of the surveillance is low, for which the existing algorithms present a substantial drop in performance, the FCM algorithm proposed outperforms the others. Finally, the DBSk algorithm adapts very well in low execution frequency, showing promising results in this challenging situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信