在线投票:通过机器学习分类器使用情感分析来预测离线结果

P. Juneja, Uma Ojha
{"title":"在线投票:通过机器学习分类器使用情感分析来预测离线结果","authors":"P. Juneja, Uma Ojha","doi":"10.1109/ICCCNT.2017.8203996","DOIUrl":null,"url":null,"abstract":"In today's world, Social Networking website like Twitter, Facebook, Instagram, etc. plays a very significant role. Twitter is a social networking website which provides loads of data that can be used for various purposes such as Sentiment Analysis for predictions, marketing, elections, etc. The objective of this research is to classify twitter data into sentiments (positive or negative) by using different supervised machine learning classifiers to predict the Delhi Corporation Elections results and to identify the most accurate machine learning classifier. The research highlights the performance of different classifiers on the twitter dataset related to political parties. Experiments show that Multinomial Naïve Bayes classifier is the most accurate sentiment predictors with 78%.","PeriodicalId":6581,"journal":{"name":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","volume":"43 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Casting online votes: To predict offline results using sentiment analysis by machine learning classifiers\",\"authors\":\"P. Juneja, Uma Ojha\",\"doi\":\"10.1109/ICCCNT.2017.8203996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's world, Social Networking website like Twitter, Facebook, Instagram, etc. plays a very significant role. Twitter is a social networking website which provides loads of data that can be used for various purposes such as Sentiment Analysis for predictions, marketing, elections, etc. The objective of this research is to classify twitter data into sentiments (positive or negative) by using different supervised machine learning classifiers to predict the Delhi Corporation Elections results and to identify the most accurate machine learning classifier. The research highlights the performance of different classifiers on the twitter dataset related to political parties. Experiments show that Multinomial Naïve Bayes classifier is the most accurate sentiment predictors with 78%.\",\"PeriodicalId\":6581,\"journal\":{\"name\":\"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)\",\"volume\":\"43 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2017.8203996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2017.8203996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在当今世界,像Twitter, Facebook, Instagram等社交网站扮演着非常重要的角色。Twitter是一个社交网站,它提供了大量的数据,可以用于各种目的,如预测、营销、选举等的情感分析。本研究的目的是通过使用不同的监督机器学习分类器来预测德里公司选举结果,并确定最准确的机器学习分类器,将twitter数据分类为情绪(积极或消极)。该研究强调了不同分类器在与政党相关的twitter数据集上的表现。实验表明,多项式Naïve贝叶斯分类器是最准确的情绪预测器,准确率为78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Casting online votes: To predict offline results using sentiment analysis by machine learning classifiers
In today's world, Social Networking website like Twitter, Facebook, Instagram, etc. plays a very significant role. Twitter is a social networking website which provides loads of data that can be used for various purposes such as Sentiment Analysis for predictions, marketing, elections, etc. The objective of this research is to classify twitter data into sentiments (positive or negative) by using different supervised machine learning classifiers to predict the Delhi Corporation Elections results and to identify the most accurate machine learning classifier. The research highlights the performance of different classifiers on the twitter dataset related to political parties. Experiments show that Multinomial Naïve Bayes classifier is the most accurate sentiment predictors with 78%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信