密度矩阵重整化群在一维Hubbard模型中的应用研究强相关电子系统

O. Odeyemi, A. Olayinka, A. I. Ejere, I. Okunzuwa, E. E. Aigbekaen, J. Idiodi
{"title":"密度矩阵重整化群在一维Hubbard模型中的应用研究强相关电子系统","authors":"O. Odeyemi, A. Olayinka, A. I. Ejere, I. Okunzuwa, E. E. Aigbekaen, J. Idiodi","doi":"10.5897/IJPS2018.4777","DOIUrl":null,"url":null,"abstract":"In this work, we applied density matrix renormalization group to one-dimensional Hubbard model at five numbers of sweep to solve strongly correlated interacting electrons system, starting from two electrons on two sites up to ten electrons on ten sites at half filling. The results that emerged from the present study is in agreement with that of exact diagonalization, variational and Lanczos solution at the varying values of the Coulomb interaction strength (U/t) at t=1. The total energy, Eg/t, of the ground state increases with the increase in interaction strength for all the numbers of site, N. The spectra intensity increases with increase in the interaction strength but decreases to zero when the interaction strength is made negatively large. This study is extended to more than two electrons on two sites. We equally show effect of interaction strength, U/t, at t = 1 on the energy-dependent entropy, S. \n \n Key words: Density matrix renormalization group, Hubbard model, sweep, exact diagonalization, variational, Lanczos, entropy.","PeriodicalId":14294,"journal":{"name":"International Journal of Physical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of density matrix renormalization group to one-dimensional Hubbard model to study strongly correlated electrons system\",\"authors\":\"O. Odeyemi, A. Olayinka, A. I. Ejere, I. Okunzuwa, E. E. Aigbekaen, J. Idiodi\",\"doi\":\"10.5897/IJPS2018.4777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we applied density matrix renormalization group to one-dimensional Hubbard model at five numbers of sweep to solve strongly correlated interacting electrons system, starting from two electrons on two sites up to ten electrons on ten sites at half filling. The results that emerged from the present study is in agreement with that of exact diagonalization, variational and Lanczos solution at the varying values of the Coulomb interaction strength (U/t) at t=1. The total energy, Eg/t, of the ground state increases with the increase in interaction strength for all the numbers of site, N. The spectra intensity increases with increase in the interaction strength but decreases to zero when the interaction strength is made negatively large. This study is extended to more than two electrons on two sites. We equally show effect of interaction strength, U/t, at t = 1 on the energy-dependent entropy, S. \\n \\n Key words: Density matrix renormalization group, Hubbard model, sweep, exact diagonalization, variational, Lanczos, entropy.\",\"PeriodicalId\":14294,\"journal\":{\"name\":\"International Journal of Physical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/IJPS2018.4777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/IJPS2018.4777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将密度矩阵重整化群应用于一维Hubbard模型的五位数扫描,以解决强相关相互作用电子系统,从两个位置上的两个电子到十个位置上的十个电子在半填充。本研究结果与t=1时库仑相互作用强度(U/t)变化值下的精确对角化、变分解和Lanczos解的结果一致。基态总能量Eg/t随相互作用强度的增加而增加,当相互作用强度为负值时,光谱强度随相互作用强度的增加而增加。本研究扩展到两个位点上的两个以上电子。我们同样展示了t = 1时相互作用强度U/t对能量依赖熵s的影响。关键词:密度矩阵重整化群,Hubbard模型,扫描,精确对角化,变分,Lanczos,熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of density matrix renormalization group to one-dimensional Hubbard model to study strongly correlated electrons system
In this work, we applied density matrix renormalization group to one-dimensional Hubbard model at five numbers of sweep to solve strongly correlated interacting electrons system, starting from two electrons on two sites up to ten electrons on ten sites at half filling. The results that emerged from the present study is in agreement with that of exact diagonalization, variational and Lanczos solution at the varying values of the Coulomb interaction strength (U/t) at t=1. The total energy, Eg/t, of the ground state increases with the increase in interaction strength for all the numbers of site, N. The spectra intensity increases with increase in the interaction strength but decreases to zero when the interaction strength is made negatively large. This study is extended to more than two electrons on two sites. We equally show effect of interaction strength, U/t, at t = 1 on the energy-dependent entropy, S. Key words: Density matrix renormalization group, Hubbard model, sweep, exact diagonalization, variational, Lanczos, entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Physical Sciences
International Journal of Physical Sciences 综合性期刊-综合性期刊
自引率
0.00%
发文量
4
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信