分布式蒙特卡罗信息融合与分布式粒子滤波

I. Manuel, A. Bishop
{"title":"分布式蒙特卡罗信息融合与分布式粒子滤波","authors":"I. Manuel, A. Bishop","doi":"10.3182/20140824-6-ZA-1003.00929","DOIUrl":null,"url":null,"abstract":"Abstract We present a Monte Carlo solution to the distributed data fusion problem and apply it to distributed particle filtering. The consensus-based fusion algorithm is iterative and it involves the exchange and fusion of empirical posterior densities between neighbouring agents. As the fusion method is Monte Carlo based it is naturally applicable to distributed particle filtering. Furthermore, the fusion method is applicable to a large class of networks including networks with cycles and dynamic topologies. We demonstrate both distributed fusion and distributed particle filtering by simulating the algorithms on randomly generated graphs.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"111 1","pages":"8681-8688"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Distributed Monte Carlo information fusion and distributed particle filtering\",\"authors\":\"I. Manuel, A. Bishop\",\"doi\":\"10.3182/20140824-6-ZA-1003.00929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a Monte Carlo solution to the distributed data fusion problem and apply it to distributed particle filtering. The consensus-based fusion algorithm is iterative and it involves the exchange and fusion of empirical posterior densities between neighbouring agents. As the fusion method is Monte Carlo based it is naturally applicable to distributed particle filtering. Furthermore, the fusion method is applicable to a large class of networks including networks with cycles and dynamic topologies. We demonstrate both distributed fusion and distributed particle filtering by simulating the algorithms on randomly generated graphs.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"111 1\",\"pages\":\"8681-8688\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.00929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.00929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要提出了分布式数据融合问题的蒙特卡罗解,并将其应用于分布式粒子滤波。基于共识的融合算法是迭代的,它涉及相邻代理之间经验后验密度的交换和融合。由于融合方法是基于蒙特卡罗的,因此自然适用于分布式粒子滤波。此外,该融合方法适用于包括循环网络和动态拓扑网络在内的大类网络。我们通过在随机生成的图上模拟算法来演示分布式融合和分布式粒子滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Monte Carlo information fusion and distributed particle filtering
Abstract We present a Monte Carlo solution to the distributed data fusion problem and apply it to distributed particle filtering. The consensus-based fusion algorithm is iterative and it involves the exchange and fusion of empirical posterior densities between neighbouring agents. As the fusion method is Monte Carlo based it is naturally applicable to distributed particle filtering. Furthermore, the fusion method is applicable to a large class of networks including networks with cycles and dynamic topologies. We demonstrate both distributed fusion and distributed particle filtering by simulating the algorithms on randomly generated graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信