Avhishek Chatterjee, K. Jagannathan, Prabha Mandayam
{"title":"通过队列的量子比特:具有等待时间相关错误的信道容量","authors":"Avhishek Chatterjee, K. Jagannathan, Prabha Mandayam","doi":"10.1109/NCC.2019.8732185","DOIUrl":null,"url":null,"abstract":"We consider a setting where qubits are processed sequentially, and derive fundamental limits on the rate at which classical information can be transmitted using quantum states that decohere in time. Specifically, we model the sequential processing of qubits using a single server queue, and derive explicit expressions for the capacity of such a ‘queue-channel.’ We also demonstrate a sweet-spot phenomenon with respect to the arrival rate to the queue, i.e., we show that there exists a value of the arrival rate of the qubits at which the rate of information transmission (in bits/sec) through the queue-channel is maximised. Next, we consider a setting where the average rate of processing qubits is fixed, and show that the capacity of the queue-channel is maximised when the processing time is deterministic. We also discuss design implications of these results on quantum information processing systems.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Qubits through Queues: The Capacity of Channels with Waiting Time Dependent Errors\",\"authors\":\"Avhishek Chatterjee, K. Jagannathan, Prabha Mandayam\",\"doi\":\"10.1109/NCC.2019.8732185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a setting where qubits are processed sequentially, and derive fundamental limits on the rate at which classical information can be transmitted using quantum states that decohere in time. Specifically, we model the sequential processing of qubits using a single server queue, and derive explicit expressions for the capacity of such a ‘queue-channel.’ We also demonstrate a sweet-spot phenomenon with respect to the arrival rate to the queue, i.e., we show that there exists a value of the arrival rate of the qubits at which the rate of information transmission (in bits/sec) through the queue-channel is maximised. Next, we consider a setting where the average rate of processing qubits is fixed, and show that the capacity of the queue-channel is maximised when the processing time is deterministic. We also discuss design implications of these results on quantum information processing systems.\",\"PeriodicalId\":6870,\"journal\":{\"name\":\"2019 National Conference on Communications (NCC)\",\"volume\":\"39 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2019.8732185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Qubits through Queues: The Capacity of Channels with Waiting Time Dependent Errors
We consider a setting where qubits are processed sequentially, and derive fundamental limits on the rate at which classical information can be transmitted using quantum states that decohere in time. Specifically, we model the sequential processing of qubits using a single server queue, and derive explicit expressions for the capacity of such a ‘queue-channel.’ We also demonstrate a sweet-spot phenomenon with respect to the arrival rate to the queue, i.e., we show that there exists a value of the arrival rate of the qubits at which the rate of information transmission (in bits/sec) through the queue-channel is maximised. Next, we consider a setting where the average rate of processing qubits is fixed, and show that the capacity of the queue-channel is maximised when the processing time is deterministic. We also discuss design implications of these results on quantum information processing systems.