{"title":"与晶界运动有关的随时间迁移率的曲线缩短方程","authors":"M. Mizuno, K. Takasao","doi":"10.4171/IFB/453","DOIUrl":null,"url":null,"abstract":"In this article, some curve shortening equation related to the evolution of grain boundaries is presented. The curve shortening equation with time-dependent mobility is derived from the grain boundary energy applying the maximum dissipation principle. Gradient estimates and large time asymptotic behavior of solutions are considered. A key ingredient is weighted monotonicity formula with time dependent mobility.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"85 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A curve shortening equation with time-dependent mobility related to grain boundary motions\",\"authors\":\"M. Mizuno, K. Takasao\",\"doi\":\"10.4171/IFB/453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, some curve shortening equation related to the evolution of grain boundaries is presented. The curve shortening equation with time-dependent mobility is derived from the grain boundary energy applying the maximum dissipation principle. Gradient estimates and large time asymptotic behavior of solutions are considered. A key ingredient is weighted monotonicity formula with time dependent mobility.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/453\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/453","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A curve shortening equation with time-dependent mobility related to grain boundary motions
In this article, some curve shortening equation related to the evolution of grain boundaries is presented. The curve shortening equation with time-dependent mobility is derived from the grain boundary energy applying the maximum dissipation principle. Gradient estimates and large time asymptotic behavior of solutions are considered. A key ingredient is weighted monotonicity formula with time dependent mobility.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.