序列与多项式同余

Q4 Mathematics
Darrell Cox, Sourangshu Ghosh
{"title":"序列与多项式同余","authors":"Darrell Cox, Sourangshu Ghosh","doi":"10.31219/osf.io/3hwzq","DOIUrl":null,"url":null,"abstract":"In this paper we shall find a new connection between nth degree polynomial mod p congruence with n roots and higher order Fibonacci and Lucas sequences. We shall first discuss about the recent work been done in sequences and their connection to polynomial congruence and then find out new relations between particular recurrence relation and the congruence of the sequences","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequences and Polynomial Congruence\",\"authors\":\"Darrell Cox, Sourangshu Ghosh\",\"doi\":\"10.31219/osf.io/3hwzq\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we shall find a new connection between nth degree polynomial mod p congruence with n roots and higher order Fibonacci and Lucas sequences. We shall first discuss about the recent work been done in sequences and their connection to polynomial congruence and then find out new relations between particular recurrence relation and the congruence of the sequences\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/3hwzq\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/3hwzq","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了n次多项式模p同余n根与高阶Fibonacci和Lucas序列之间的一个新的联系。我们首先讨论最近在数列方面所做的工作以及它们与多项式同余的联系,然后找出特殊递归关系与数列的同余之间的新关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequences and Polynomial Congruence
In this paper we shall find a new connection between nth degree polynomial mod p congruence with n roots and higher order Fibonacci and Lucas sequences. We shall first discuss about the recent work been done in sequences and their connection to polynomial congruence and then find out new relations between particular recurrence relation and the congruence of the sequences
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信