泊松过程的序贯选择和首道问题

A. Gnedin
{"title":"泊松过程的序贯选择和首道问题","authors":"A. Gnedin","doi":"10.1214/21-ECP377","DOIUrl":null,"url":null,"abstract":"This note is motivated by connections between the online and offline problems of selecting a possibly long subsequence from a Poisson-paced sequence of uniform marks under either a monotonicity or a sum constraint. The offline problem with the sum constraint amounts to counting the Poisson arrivals before their total exceeds a certain level. A precise asymptotics for the mean count is obtained by coupling with a nonlinear pure birth process.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On sequential selection and a first passage problem for the Poisson process\",\"authors\":\"A. Gnedin\",\"doi\":\"10.1214/21-ECP377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note is motivated by connections between the online and offline problems of selecting a possibly long subsequence from a Poisson-paced sequence of uniform marks under either a monotonicity or a sum constraint. The offline problem with the sum constraint amounts to counting the Poisson arrivals before their total exceeds a certain level. A precise asymptotics for the mean count is obtained by coupling with a nonlinear pure birth process.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ECP377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ECP377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在单调性或求和约束下,从均匀标记的泊松节奏序列中选择可能的长子序列,这一在线和离线问题之间的联系激发了本文的动机。具有总和约束的离线问题相当于在泊松到达的总数超过一定水平之前计算泊松到达。通过与非线性纯出生过程的耦合,得到了平均计数的精确渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sequential selection and a first passage problem for the Poisson process
This note is motivated by connections between the online and offline problems of selecting a possibly long subsequence from a Poisson-paced sequence of uniform marks under either a monotonicity or a sum constraint. The offline problem with the sum constraint amounts to counting the Poisson arrivals before their total exceeds a certain level. A precise asymptotics for the mean count is obtained by coupling with a nonlinear pure birth process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信