基于周期性nft通信系统性能改进的机器学习

O. Kotlyar, Morteza Kamalian Kopae, J. Prilepsky, M. Pankratova, S. Turitsyn
{"title":"基于周期性nft通信系统性能改进的机器学习","authors":"O. Kotlyar, Morteza Kamalian Kopae, J. Prilepsky, M. Pankratova, S. Turitsyn","doi":"10.1049/cp.2019.1089","DOIUrl":null,"url":null,"abstract":"We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processing","PeriodicalId":6826,"journal":{"name":"45th European Conference on Optical Communication (ECOC 2019)","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine learning for performance improvement of periodic NFT-based communication system\",\"authors\":\"O. Kotlyar, Morteza Kamalian Kopae, J. Prilepsky, M. Pankratova, S. Turitsyn\",\"doi\":\"10.1049/cp.2019.1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processing\",\"PeriodicalId\":6826,\"journal\":{\"name\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cp.2019.1089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"45th European Conference on Optical Communication (ECOC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cp.2019.1089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们比较了几种机器学习方法的性能,包括支持向量机、k近邻、k均值聚类和高斯混合模型,这些方法用于基于周期性非线性傅立叶变换信号处理的光通信系统中增加传输距离
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for performance improvement of periodic NFT-based communication system
We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processing
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信