O. Kotlyar, Morteza Kamalian Kopae, J. Prilepsky, M. Pankratova, S. Turitsyn
{"title":"基于周期性nft通信系统性能改进的机器学习","authors":"O. Kotlyar, Morteza Kamalian Kopae, J. Prilepsky, M. Pankratova, S. Turitsyn","doi":"10.1049/cp.2019.1089","DOIUrl":null,"url":null,"abstract":"We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processing","PeriodicalId":6826,"journal":{"name":"45th European Conference on Optical Communication (ECOC 2019)","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine learning for performance improvement of periodic NFT-based communication system\",\"authors\":\"O. Kotlyar, Morteza Kamalian Kopae, J. Prilepsky, M. Pankratova, S. Turitsyn\",\"doi\":\"10.1049/cp.2019.1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processing\",\"PeriodicalId\":6826,\"journal\":{\"name\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"45th European Conference on Optical Communication (ECOC 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cp.2019.1089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"45th European Conference on Optical Communication (ECOC 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cp.2019.1089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning for performance improvement of periodic NFT-based communication system
We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processing