M. Lindner, Konrad Vanselow, S. Gelbrich, L. Kroll
{"title":"基于纤维增强聚合物的钢筋和箍筋增强混凝土结构","authors":"M. Lindner, Konrad Vanselow, S. Gelbrich, L. Kroll","doi":"10.17265/2161-6213/2018.3-4.001","DOIUrl":null,"url":null,"abstract":"Fiber-plastic composites offer an interesting alternative to concrete reinforcement. In order to expand the application spectrum of reinforcing elements in fiber composite construction, a new steel-free bracing system with reduced radii of curvature has been developed. An improvement in load carrying capacity could be proven in extensive investigations based on international testing methods and verified by practical tests. With the help of newly reinforced precast concrete elements from the area of waterways and traffic routes, a high potential for lightweight construction and resource efficiency can be impressively demonstrated.","PeriodicalId":16171,"journal":{"name":"Journal of materials science & engineering","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fiber-Reinforced Polymers Based Rebar and Stirrup Reinforcing Concrete Structures\",\"authors\":\"M. Lindner, Konrad Vanselow, S. Gelbrich, L. Kroll\",\"doi\":\"10.17265/2161-6213/2018.3-4.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiber-plastic composites offer an interesting alternative to concrete reinforcement. In order to expand the application spectrum of reinforcing elements in fiber composite construction, a new steel-free bracing system with reduced radii of curvature has been developed. An improvement in load carrying capacity could be proven in extensive investigations based on international testing methods and verified by practical tests. With the help of newly reinforced precast concrete elements from the area of waterways and traffic routes, a high potential for lightweight construction and resource efficiency can be impressively demonstrated.\",\"PeriodicalId\":16171,\"journal\":{\"name\":\"Journal of materials science & engineering\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials science & engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17265/2161-6213/2018.3-4.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials science & engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17265/2161-6213/2018.3-4.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fiber-Reinforced Polymers Based Rebar and Stirrup Reinforcing Concrete Structures
Fiber-plastic composites offer an interesting alternative to concrete reinforcement. In order to expand the application spectrum of reinforcing elements in fiber composite construction, a new steel-free bracing system with reduced radii of curvature has been developed. An improvement in load carrying capacity could be proven in extensive investigations based on international testing methods and verified by practical tests. With the help of newly reinforced precast concrete elements from the area of waterways and traffic routes, a high potential for lightweight construction and resource efficiency can be impressively demonstrated.